Skip to content

A study guide I created to help prepare for the scary CS225 final exam at U of I!

Notifications You must be signed in to change notification settings

pkgamma/cs225-final-review

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CS225 Final Exam Review

This is a study guide I created to help prepare for the scary CS225 final exam at U of I! This is by no means complete, I only included content that I found unfamiliar.

Study Resources

Final Exam Topics

C++ Basics

Encapsulation

Separate the interface from implementation but still keep them as a cohesive unit.

#pragma once

Telling compiler that this particular file will be included only once within this single compilation.

Reference Variable

An alias to an existing variable. Never creates new memory.

Pointers

Stores a memory address of the instance instead of storing data.

Stack Memory

Default type memory, starts near the top of memory.

Heap Memory

  • Starts from low memory values and grows up.
  • Use new to create, delete to free.
  • Memory leak is when we don't delete when done.

const Function Parameter

  • Cube joinCubes(const Cube & c1) to prevent the parameters passed in to be changed.
  • double getVolume() const; means that getVolume() guarantees it will not modify the value.

virtual Function

  • Allow us to override the function in derived classes.

Let's say we have 2 classes...

class Animal
{
    public:
        _____ void eat() { std::cout << "I'm eating generic food."; }
};

class Cat : public Animal
{
    public:
        void eat() { std::cout << "I'm eating a rat."; }
};

and I create these in main.cpp...

Animal *animal = new Animal;
Cat *cat = new Cat;

this should be easy...

animal->eat(); // Outputs: "I'm eating generic food."
cat->eat();    // Outputs: "I'm eating a rat."

but now with this new function I created in main.cpp...

void func(Animal *xyz) { xyz->eat(); }

Case 1, void eat()... in class Animal (without virtual):

func(animal); // Outputs: "I'm eating generic food."
func(cat);    // Outputs: "I'm eating generic food."

Case 2, virtual void eat()... in class Animal (with virtual):

func(animal); // Outputs: "I'm eating generic food."
func(cat);    // Outputs: "I'm eating a rat."

Templates

  • A dynamic data type
  • Using Template <typename T> so that we do not need to write same function for various types
template <typename T>
T maximum(T a, T b) {
     T result;
     result = (a > b) ? a : b;
     return result;
}

List

Abstract Data Types (ADT)

ADT describes functionality but not implementation details.

Linked List

// Implementation

class List {
     public:
          /* ... */
     private:    
         class ListNode {
              T & data;
              ListNode * next;
              ListNode(T & data) : data(data), next(NULL) { }
         };
};
// Find: Recursive

ListNode *& _index(unsigned index) {
  return _index_helper(index, _head);
}

ListNode *& _index_helper(unsigned index, ListNode *& node) {
  if (index == 0) {
    return node;
  } else {
    return _index_helper(index - 1, node -> next);
}
// Find: Iterative
//       Moving the pointer one by one until it's at the right location.

ListNode *& _index(unsigned index) {
  if (index == 0) {
    return head;
  } else {
    ListNode *thru = head;
    for (unsigned i = 0; i < index - 1; i++) {
      thru = thru->next;
    }
    return thru->next;
  }
}
// Operator []

T & operator[](unsigned index) {
  ListNode *& d = _index(index);
  return d -> data;
}
// Insert

void nsert(const T & t, unsigned index) {
  ListNode *& node = _index(index);
  ListNode * newNode = new ListNode(t);
  newNode -> next = node;
  node = newNode;
}

Iterator on List

To implement an iterator, must have

  • begin()
  • end()
  • operator++
  • operator*
  • operator!=
for (std::vector<Animal>::iterator it = zoo.begin(); it != zoo.end(); it++) {
  std::cout << (*it).name << " " << (*it).food << std::endl;
}
Singly Linked List ArrayList
Insert/Remove at Front O(1) O(1) (amortized)
Insert at a given element O(1) O(n) (needs to copy everything after)
Remove a given element O(1) O(n)
Insert an arbitrary element O(n) O(n)
Remove at arbitrary location O(n) O(n)

Stack

Like dining hall plates.

  • push
  • pop

Queue

Like a line is Disneyland.

  • enqueue
  • dequeue

Binary Trees

Each node has at most 2 children.

Full Tree

Each node has either 2 or 0 children.

Perfect Tree

Full tree + all leaves same distance from root.

Complete Tree

Full tree + perfect tree except last level, where all leaves are "pushed to the left."

Traversal (on Tree)

To traverse a tree means we process every element exactly once in a tree.

// pre-order

void preOrder(TreeNode * cur) {
  if (cur != NULL) {
    print(cur->data);     // print is some imaginary function
    preOrder(cur->left);
    preOrder(cur->right);
  }
}
// in-order

void inOrder(TreeNode * cur) {
  if (cur != NULL) {
    inOrder(cur->left);
    print(cur->data); 
    inOrder(cur->right);
  }
}
// post-order

void postOrder(TreeNode * cur) {
  if (cur != NULL) {
    postOrder(cur->left);
    postOrder(cur->right);
    print(cur->data);  
  }
}

Search (on Tree)

BFS

  • Visit nearby nodes quickly by each level.
  • In other words, visit the direct descendants quicker (level-order traversal).

DFS

  • Find the endpoint of a path quickly, and to move deeper into the tree as quickly as possible.
  • In other words, we visit the leaves as soon as possible.

BST Tree (Binary Search Tree)

Binary tree but

  • Everything to the left of root < root
  • Everything to the right of root > root

Find

// Find

TreeNode *& _find(TreeNode *& root, const K & key) const {
     If (root == NULL || key == root->key) {
          return root;  //root is null when we cannot find
     }
     If (key < root->key) {
          return _find(root->left, key);
     }
     If (key > root->key) {
          return _find(root->right, key);
     }
}

Remove

  • No child: Just remove
  • 1 child: Swap with child then remove
  • 2 children: Swap with IOP then remove, like this:
  1. Find inorder predecessor (IOP), the largest node in the left subtree (the rightmost node).
  2. Swap IOP and the node we want to delete.
  3. The node is now a leaf, so we can remove it.

BST Analysis

Operation BST Average Case BST Worst Case Sorted Array Sorted List
find O(lg n) O(h) <= O(n) O(lg n) with binary search O(n) no binary search
insert O(lg n) O(h) <= O(n) O(n) with find O(lg n), move O(n) O(n) find data with O(n)
delete O(lg n) O(h) <= O(n) O(n) O(n)
traverse O(n) O(n) O(n) O(n)

Balance Factor

b = height(TR) - height(TL)

  • left heavy: b negative
  • right heavy: b positive
  • balanced: if |b| <= 1
  • lowest point of imbalance: the deepest node in the tree that is out of balance

BST Rotation

  • 4 kinds of rotation (L, R, LR, RL)
    • Simple rotations: stick
    • Complex rotations: elbow
  • All rotations local
  • All rotations run in O(1)

AVL Tree

Self-Balancing BST where the difference between heights of left and right subtrees cannot be more than 1.

To maintain height of tree:

  1. Check for imbalance.
  2. Correct it (do rotations).
  3. Update height.

Running Time

  • O(lg(n)) for all operations.

Number of Rotations

  • Find: 0
  • Insert: up to 1 (L, R, LR, or RL)
  • Delete: up to h (O(lg(n)))

Red Black Tree

  • Almost the same as AVL Trees.
  • Maximal height is 2 * lg(n) = O(lg(n)).

Summary: Every Data Structure So Far

Worst runtime Unsorted Array Sorted Array Unsorted List Sorted List Binary Tree (unsorted) BST AVL
find O(n) O(lg n) Binary search O(n) O(n) O(n) O(h)<=n O(lg n)
insert O(1)* InsertEnd and resize properly O(n) Shifting up to ½ data O(1) InsertFront O(n) O(1) Insert at root O(h)<=n O(lg n)
remove O(n) O(n) O(n) O(n) O(n) O(h)<=n O(lg n)
traverse O(n) O(n) O(n) O(n) O(n) O(n) O(n)

*: amortized runtime

k-d Tree

  • aka k-dimensional tree.
  • A BST that organizes points in k dimensional space.
  • Every node in a k-d Tree contains one point.
  • Every parent node splits the space into two subspaces based on a certain dimension.
  • Every node in its left subtree is in the left subspace, and every node in its right subtree is in the right subspace.
  • The dimension that a node is splitting on depends on which level of the tree this node is in.
  • Useful for range and nearest neighbor searches.

Constructing a k-d Tree

1. Alternate splitting dimension

  • Each node splits the space in a certain dimension.
  • Nodes on the i th level split the space in the i th dimension.
  • If i is greater than k, the dimension wraps back around to i mod k.

Example: a 2-d k-d tree, each node on a odd level splits the x dimension, and each node on a even level splits the y dimension:

2. Find the median

  • Each node split the space such that number of nodes in the left subspace = right subspace.
  • We pick the median among the nodes for the current dimension and make it the subroot.

3. Recurse on subtrees

Given this array to construct a k-d tree:

Find the median in terms of current dimension (dimension 1):

Partition so that smaller on left, greater on right:

Find the median in terms of current dimension (dimension 2):

Repeat this process until the array only consists of one node:

B Tree (of order m)

  • Each node holes 2 arrays
    • first holds the keys of the node
    • second holds pointers to the children

Properties

  • Keys within a node are ordered
  • Leaves contain no more than m-1 keys
  • Internal nodes have exactly one more child than keys
  • Root nodes can have 2 to m children
  • Internal nodes can have ceil(m/2) to m children
  • All leaves are at the same depth, which makes the tree balanced

Find

template <class K, class V>
V BTree<K, V>::find(const BTreeNode* subroot, const K& key) const
{
    /* If first_larger_idx is a valid index and the key there is the key we
     * are looking for, we are done. */

    /* Otherwise, we need to figure out which child to explore. For this we
     * can actually just use first_larger_idx directly. E.g.
     * | 1 | 5 | 7 | 8 |
     * Suppose we are looking for 6. first_larger_idx is 2. This means we want to
     * explore the child between 5 and 7. The children vector has a pointer for
     * each of the horizontal bars. The index of the horizontal bar we want is
     * 2, which is conveniently the same as first_larger_idx. If the subroot is
     * a leaf and we didn't find the key in it, then we have failed to find it
     * anywhere in the tree and return the default V.
     */

    size_t first_larger_idx = insertion_idx(subroot->elements, key);

    if (first_larger_idx < subroot->elements.size() && subroot->elements[first_larger_idx].key == key) {
        return subroot->elements[first_larger_idx].value;
    }

    if (subroot->is_leaf) {
        return V();
    } else {
        return find(subroot->children[first_larger_idx], key);
    }
}

Runtime

  • Search: O(log n)
  • Combining/Splitting of Keys: O(m)
  • Insert/Delete: O((m/log m) * log n)

Hashing

  • The hash function: f(h) -> Integers
  • The compression: Integer -> array
  • Handling collisions

Resolving Collisions

Seperate Chaining

void insert(K key, V value) {

    elems++;

    if (shouldResize()) { resizeTable(); }

    size_t idx = hash(key, size);

    pair<K, V> insert(key, value);

    // table is list<pair<K, V>>[size];
    table[idx].push_front(insert);
}
void remove(K key) {

    typename list<pair<K, V>>::iterator it;

    size_t idx = hash(key, size);

    for (it = table[idx].begin(); it != table[idx].end(); it++) {
        if (it->first == key) {

            table[idx].remove(it);
            elems--;
            return;

        }
    }
}
V find(K key) {

    typename list<pair<K, V>>::iterator it;

    size_t idx = hash(key, size);

    for (it = table[idx].begin(); it != table[idx].end(); it++) {
        if (it->first == key) {

            return it->second;

        }
    }
}
void resizeTable() {

    typename list<pair<K, V>>::iterator it;

    size_t newSize = findPrime(s * size);

    list<pair<K, V>> * newTable = new list<pair<K, V>>[newSize];

    for (size_t i = 0; i < size; i++) {
        for (it = table[i].begin(); it != table[i].end(); i++) {

            size_t = newIdx = hash(key, size);
            pair<K, V> newPair(it_.first, it->second);
            newTable[newIdx].push_front(newPair);

        }
    }

    size  = newSize;
    table = newTable;
}

Linear Probing

Flags for whether or not to probe forward when looking at a particular cell in the table.

bool * should_probe;
void insert(K key, V value) {

    elems++;

    if (shouldResize()) { resizeTable(); }

    size_t insertIndex = hash(key, size);

    while (table[insertIndex] != NULL) {
        insertIndex = ((insertIndex + 1) % size);
    }

    table[insertIndex] = new pair<K, V>(key, value);

    should_probe[insertIndex] = true;
}
void remove(K key) {

    int removeIndex = findIndex(key);

    if (removeIndex != -1) {
        delete table[removeIndex];
        table[removeIndex] = NULL;

        elems--;
    }
}
V find(K & key) {

    // see below
    int idx = findIndex(key);

    if (idx != -1) {
        return table[idx]->second;
    }
    
    return V();
}
int findIndex(K & key) {

    size_t findIndex = hash(key, size);

    size_t orgIndex = findIndex;

    while (should_probe[findIndex] == true) {

        if (table[findIndex]->first == key) {    
            return findIndex;
        }

        findIndex = (findIndex + 1) % size;

        if (findIndex == orgIndex) {
            break;
        }

    }

    return -1;
}
void resizeTable() {

    size_t newSize = findPrime(size * 2);

    pair<K, V>** resizeTemp = new pair<K, V>*[newSize];

    delete[] should_probe;
    should_probe = new bool[newSize];

    for (size_t i = 0; i < newSize; i++) {
        resizeTemp[i] = NULL;
        should_probe[i] = false;
    }

    for (size_t i = 0; i < size; i++) {
        if (table[i]) {
            size_t index = hash(table[i]->first, newSize);
            while (resizeTemp[index] != NULL) {
                index = ((index + 1) % newSize);
            }
            resizeTemp[index] = table[i];
            should_probe[index] = true;
        }
    }

    delete[] table;
    table = resizeTemp;
    size = newSize;

}

Double Hashing

void insert(K & key, V & value) {

    elems++;

    if (shouldResize()) {
        resizeTable();
    }

    size_t insertIndex = hashes::hash(key, size);
    size_t secondHash  = hashes::secondary_hash(key, size);

    while (table[insertIndex] != NULL) {
        insertIndex = ((insertIndex + secondHash) % size);
    }

    table[insertIndex] = new pair<K, V>(key, value);

    should_probe[insertIndex] = true;
}
void remove(K & key) {

    int removeIndex = findIndex(key);

    if (removeIndex != -1) {
        delete table[removeIndex];
        table[removeIndex] = NULL;
        elems--;
    }
}
V find(K & key) const {
    int idx = findIndex(key);
    if (idx != -1) return table[idx]->second;
    return V();
}
int findIndex(K & key) {

    size_t findIndex  = hashes::hash(key, size);
    size_t secondHash = hashes::secondary_hash(key, size);
    size_t orgIndex   = findIndex;

    while (should_probe[findIndex]) {

        if (table[findIndex]->first == key) {
            return findIndex;
        }

        findIndex = (findIndex + secondHash) % size;

        if (findIndex == orgIndex) {
            break;
        }
    }

    return -1;
}
void resizeTable() {

    size_t newSize = findPrime(size * 2);

    pair<K, V>** temp = new pair<K, V>*[newSize];

    // create a new should_probe that fits the new size
    delete[] should_probe;
    should_probe = new bool[newSize];

    // init the new table we created
    for (size_t i = 0; i < newSize; i++) {
        temp[i] = NULL;
        should_probe[i] = false;
    }

    for (size_t slot = 0; slot < size; slot++) {

        if (table[slot] != NULL) {

            size_t h    = hashes::hash(table[slot]->first, newSize);
            size_t jump = hashes::secondary_hash(table[slot]->first, newSize);
            size_t i    = 0;
            size_t idx  = h;

            while (temp[idx] != NULL) {
                ++i;
                idx = (h + jump * i) % newSize;
            }

            temp[idx] = table[slot];
            should_probe[idx] = true;
        }
    }

    delete[] table;
    
    table = temp;
    size = newSize;
}

Heaps (Priority Queues)

Whenever remove is called, the data structure pops out an element with a predetermined property (for example, the smallest element in minHeap).

minHeap

  • Map level order tree traversal to an array or vector.
  • Use trees just for representation.
  • Root starts at 1 for convenience.

heapifyUp

void heapifyUp(idx) {

    if (idx = root()) { return; }

    size_t parent = parent(idx);

    // if index is more "min" than parent
    if (higherPiority(_elem[idx], _elem[parent])) {
        swap(elem[idx], _elem[parent]);
        heapiftUp(parent);
    }
}

heapifyDown

void heapifyDown(idx) {

    if (hasAChild(idx) == false) { return; }

    size_t minChild = maxPriorityChild(idx);

    // if minChild is more "min" than index
    if (higherPiority(_elem[minChild], _elem[idx])) {
        swap(_elem[minChild], _elem[idx];
        heapifyDown(minChild);
    }
}

Disjoint Sets

void DisjointSets::addelements(int num) {
    for (int i = 0; i < num; i++) {
        elems.push_back(-1);
    }
}
int DisjointSets::find(int elem) {
    if (elems[elem] < 0) {
        return elem;
    } else {
        return find(elems[elem]);
    }
}
void DisjointSets::setunion(int a, int b) {
    int a_root = find(a);
    int b_root = find(b);
    int size = elems[a_root] + elems[b_root];

    if (elems[a_root] <= elems[b_root]) {
        elems[b_root] = a_root;
        elems[a_root] = size;
    } else {
        elems[a_root] = b_root;
        elems[b_root] = size;
    }
}
int DisjointSets::size(int elem) {
    if (elem >= (int)elems.size() || elem < 0) {
        return 0;
    } else {
        return elems[find(elem)] * -1;
    }
}

Graphs

Implementations

  • Edge List

    • Vertex collection: Use a hash table (find/remove/insert will be O(1)).
    • Edge collections: Use a linked list (hash table is not good because we have many collisions (no random distribution, violates SUHA) )
  • Adjacency Matrix

    • Maintain a hash table of vertices and a list of edges.
    • Add an nn matrix → store a pointer to the edge in edge list for every index in the matrix where the two vertices are adjacent.
  • ADJ List

    • We will maintain a hash table of vertices, and every vertex in the table has a linked list of pointers which point to edges in the edge list.
    • Elements from the edge list will point back to the hash table.

Kruskal's MST (Minimum Spanning Tree)

KruskalMST(G):
     DisjointSets forest
     foreach (Vertex v : G):
          forest.makeSet(v)

     PriorityQueue Q    // min edge weight
     foreach (Edge e : G):
          Q.insert(e)

     Graph T = (V, {})

     while |T.edges()| < n-1:
          Vertex (u, v) = Q.removeMin()
          if forest.find(u) != forest.find(v):
               T.addEdge(u, v)
               forest.union( forest.find(u),
                                    forest.find(v) )
     return T

Prim's MST (Minimum Spanning Tree)

PrimMST(G, s):
  Input: G, Graph;
         s, vertex in G, starting vertex
  Output: T, a minimum spanning tree (MST) of G

  foreach (Vertex v : G):  
    d[v] = +inf
    p[v] = NULL
  d[s] = 0

  PriorityQueue Q   // min distance, defined by d[v]
  Q.buildHeap(G.vertices())
  Graph T           // "labeled set"

  repeat n times:
    Vertex m = Q.removeMin()
    T.add(m)
    foreach (Vertex v : neighbors of m not in T):
      if cost(v, m) < d[v]:
        d[v] = cost(v, m)
        p[v] = m

  return T

Dijkstra's SSSP (Single Source Shortest Path)

Dijkstra(Graph, source, destination):

  initialize distances  // initialize tentative distance value
  initialize previous   // initialize a map that maps current node -> its previous node
  initialize priority_queue   // initialize the priority queue
  initialize visited

  while the top of priority_queue is not destination:
      get the current_node from priority_queue
      for neighbor in current_node's neighbors and not in visited:
          if update its neighbor's distances:
              previous[neighbor] = current_node
      save current_node into visited

  extract path from previous
  return path and distance

Floyd-Warshall's APSP (All Pairs Shortest Path)

Floyd-Warshall’s Algorithm solves the problem Dijkstra's algorithm has with negative edges.

About

A study guide I created to help prepare for the scary CS225 final exam at U of I!

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published