Skip to content

Hierarchical Time Series Forecasting using Singular Spectrum Analysis

License

Notifications You must be signed in to change notification settings

paulocanas/ssa.hts

Repository files navigation

ssa.hts

The goal of the ssa.hts package is to use singular spectrum analysis to forecast hierarchical time series.

Installation

You can install the development version of ssa.hts from GitHub with:

# install.packages("devtools")
devtools::install_github("paulocanas/ssa.hts")

Example

This is a basic example which shows you how to solve a common problem:

#library(ssa.hts)
## basic example code
x <- datasets::AirPassengers[1:15]
L <- 8
ssa.hts::hankel_matrix(x, L)
#>      [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
#> [1,]  112  118  132  129  121  135  148  148
#> [2,]  118  132  129  121  135  148  148  136
#> [3,]  132  129  121  135  148  148  136  119
#> [4,]  129  121  135  148  148  136  119  104
#> [5,]  121  135  148  148  136  119  104  118
#> [6,]  135  148  148  136  119  104  118  115
#> [7,]  148  148  136  119  104  118  115  126
#> [8,]  148  136  119  104  118  115  126  141

What is special about using README.Rmd instead of just README.md? You can include R chunks like so:

summary(cars)
#>      speed           dist       
#>  Min.   : 4.0   Min.   :  2.00  
#>  1st Qu.:12.0   1st Qu.: 26.00  
#>  Median :15.0   Median : 36.00  
#>  Mean   :15.4   Mean   : 42.98  
#>  3rd Qu.:19.0   3rd Qu.: 56.00  
#>  Max.   :25.0   Max.   :120.00

#You’ll still need to render README.Rmd regularly, to keep README.md up-to-date. devtools::build_readme() is handy for this.

Plot of the data:

#In that case, don’t forget to commit and push the resulting figure files, so they display on GitHub and CRAN.

About

Hierarchical Time Series Forecasting using Singular Spectrum Analysis

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages