The goal of the ssa.hts package is to use singular spectrum analysis to forecast hierarchical time series.
You can install the development version of ssa.hts from GitHub with:
# install.packages("devtools")
devtools::install_github("paulocanas/ssa.hts")
This is a basic example which shows you how to solve a common problem:
#library(ssa.hts)
## basic example code
x <- datasets::AirPassengers[1:15]
L <- 8
ssa.hts::hankel_matrix(x, L)
#> [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
#> [1,] 112 118 132 129 121 135 148 148
#> [2,] 118 132 129 121 135 148 148 136
#> [3,] 132 129 121 135 148 148 136 119
#> [4,] 129 121 135 148 148 136 119 104
#> [5,] 121 135 148 148 136 119 104 118
#> [6,] 135 148 148 136 119 104 118 115
#> [7,] 148 148 136 119 104 118 115 126
#> [8,] 148 136 119 104 118 115 126 141
What is special about using README.Rmd
instead of just README.md
?
You can include R chunks like so:
summary(cars)
#> speed dist
#> Min. : 4.0 Min. : 2.00
#> 1st Qu.:12.0 1st Qu.: 26.00
#> Median :15.0 Median : 36.00
#> Mean :15.4 Mean : 42.98
#> 3rd Qu.:19.0 3rd Qu.: 56.00
#> Max. :25.0 Max. :120.00
#You’ll still need to render README.Rmd
regularly, to keep
README.md
up-to-date. devtools::build_readme()
is handy for this.
Plot of the data:
#In that case, don’t forget to commit and push the resulting figure files, so they display on GitHub and CRAN.