Let's predict Iris
species from Iris's metrics!!!
- Sepal length
- Sepal width
- Petal length
- Petal width
- Species
note :
- Sepal(กลีบเลี้ยง)
- Petal(กลีบดอก)
pip install -r requirements.txt
Load Iris data set from Sci-Kit learn datasets
Ref. Jupyter notebook
from sklearn.datasets import load_iris
iris = load_iris()
X, y = iris['data'], iris['target']
from sklearn.model_selection import train_test_split
import numpy as np
dataset = np.hstack((X, y.reshape(-1,1)))
np.random.shuffle(dataset)
X_train, X_test, y_train, y_test = train_test_split(dataset[:,:4],
dataset[:,4],
test_size=0.2)
In this example, I using LogisticRegression
model :
from sklearn.linear_model import LogisticRegression
model = LogisticRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_pred)
import joblib
joblib.dump(model, 'iris.model')
Example code :
from flask import Flask, request
from flask_cors import CORS, cross_origin
import traceback
import sys
import joblib
import numpy as np
import os
app = Flask(__name__)
CORS(app)
model = None
@app.route('/iris', methods=['POST'])
@cross_origin()
def predict_species():
req = request.values['param']
inputs = np.array(req.split(','), dtype=np.float32).reshape(1,-1)
predict_target = model.predict(inputs)
if predict_target == 0:
return 'Setosa'
elif predict_target == 1:
return 'Versicolour'
else:
return 'Virginica'
if __name__ == '__main__':
try:
# Load model
model = joblib.load('iris.model')
port = int(os.environ.get('PORT', 5000))
app.run(host='0.0.0.0', port=port, debug=True)
except Exception as ex:
traceback.print_exc(file=sys.stdout)
Sepal length | Sepal width | Petal length | Petal width |
---|---|---|---|
5.1 | 3.5 | 1.4 | 0.2 |
It should predict to Setosa
.
Example the request:
Don't see it(the service) alone, let's deploy it to public cloud!!!
Please refer to https://devcenter.heroku.com/articles/heroku-cli
In the root of the project directory :
$ heroku container:login
# Login Succeeded
$ heroku create YOUR_SERVICE_NAME
# Creating ⬢ YOUR_SERVICE_NAME... done
# https://YOUR_SERVICE_NAME.herokuapp.com/ | https://git.heroku.com/YOUR_SERVICE_NAME.git
$ heroku container:push web --app YOUR_SERVICE_NAME
# === Building web (/YOUR_DIRECTORY/Dockerfile)
# Sending build context to Docker daemon 4.793MB
# Step 1/7 : FROM python:3.7-slim-buster
# ...
# latest: digest: sha256:c7548c...............................788c01 size: 2001
# Your image has been successfully pushed. You can now release it with the 'container:release' command.
$ heroku container:release web --app YOUR_SERVICE_NAME
# Releasing images web to YOUR_SERVICE_NAME... done
Check service status :
$ heroku logs --app YOUR_SERVICE_NAME
# CURRENT_DATE_TIME app[api]: Initial release by user [email protected]
# CURRENT_DATE_TIME app[api]: Release v1 created by user [email protected]
# ...
# CURRENT_DATE_TIME app[web.1]: * Environment: production
# CURRENT_DATE_TIME app[web.1]: WARNING: This is a development server. Do not use it in a production deployment.
# CURRENT_DATE_TIME app[web.1]: Use a production WSGI server instead.
# CURRENT_DATE_TIME app[web.1]: * Debug mode: on
# CURRENT_DATE_TIME app[web.1]: * Running on http://0.0.0.0:13879/ (Press CTRL+C to quit)
# CURRENT_DATE_TIME app[web.1]: * Restarting with stat
# CURRENT_DATE_TIME app[web.1]: * Debugger is active!
# CURRENT_DATE_TIME app[web.1]: * Debugger PIN: 281-003-968
# CURRENT_DATE_TIME heroku[web.1]: State changed from starting to up
MIT