-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Browse files
Browse the repository at this point in the history
I think that the folder structure is clear by now and the refactor is completed so I consider this issues closed.
- Loading branch information
Showing
3 changed files
with
42 additions
and
111 deletions.
There are no files selected for viewing
This file was deleted.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,62 +1,45 @@ | ||
import torch | ||
import torch.nn as nn | ||
import torchvision.models as models | ||
from torchvision import datasets | ||
from torch.utils.data import DataLoader | ||
from train import train | ||
from evaluate import evaluate as eval | ||
|
||
num_classes = 10 | ||
num_epochs = 10 | ||
batch_size = 32 | ||
|
||
# Transforms | ||
transform = models.EfficientNet_B0_Weights.DEFAULT.transforms() | ||
|
||
train_data = datasets.CIFAR10( | ||
root=".", | ||
train=True, | ||
download=True, | ||
transform=transform, | ||
) | ||
|
||
test_data = datasets.CIFAR10( | ||
root=".", | ||
train=False, | ||
download=True, | ||
transform=transform, | ||
) | ||
|
||
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True) | ||
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False) | ||
|
||
# Load the pre-trained EfficientNet-B0 model | ||
model = models.efficientnet_b0(weights="DEFAULT") | ||
|
||
# Freeze all the parameters in the pre-trained model | ||
for param in model.parameters(): | ||
param.requires_grad = False | ||
|
||
# Replace the last fully connected layer with a new one | ||
num_ftrs = model.classifier[1].in_features | ||
model.classifier[1] = nn.Linear(num_ftrs, num_classes) | ||
|
||
# Define the number of classes | ||
num_classes = 10 | ||
|
||
# Print the model architecture | ||
print(model) | ||
|
||
# Move the model to GPU if available | ||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
model = model.to(device) | ||
|
||
# Define the loss function | ||
criterion = nn.CrossEntropyLoss() | ||
|
||
# Define the optimizer | ||
optimizer = torch.optim.Adam(model.parameters(), lr=0.001) | ||
import yaml | ||
from datetime import datetime | ||
from utils.data_utils import get_dataloaders | ||
from models import get_model | ||
from trainers import get_trainer | ||
from os import path | ||
|
||
def main(config_path): | ||
with open(config_path, 'r') as file: | ||
config = yaml.safe_load(file) | ||
|
||
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | ||
train_loader, test_loader = get_dataloaders(config) | ||
|
||
# Loads the specified model based on the configuration | ||
model = get_model( | ||
config['model']['name'], | ||
config['model']['num_classes'], | ||
pretrained=config['model']['pretrained'] | ||
).to(device) | ||
|
||
criterion = torch.nn.CrossEntropyLoss() | ||
optimizer = torch.optim.Adam(model.parameters(), lr=config['training']['learning_rate']) | ||
|
||
# Prepare filenames for logging and plotting | ||
current_time = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") | ||
model_dataset_time = f"{config['model']['name']}_{config['data']['name']}_{current_time}" | ||
log_filename = path.join(config['paths']['log_path'], f"log_{model_dataset_time}.csv") | ||
plot_filename = path.join(config['paths']['plot_path'], f"plot_{model_dataset_time}.png") | ||
|
||
trainer = get_trainer(config['trainer'], model=model, device=device) | ||
|
||
trainer.build(criterion=criterion, optimizer=optimizer) | ||
|
||
trainer.train( | ||
train_loader=train_loader, | ||
num_epochs=config['training']['num_epochs'], | ||
log_path=log_filename, | ||
plot_path=plot_filename | ||
) | ||
trainer.evaluate(test_loader=test_loader) | ||
|
||
if __name__ == "__main__": | ||
train(num_epochs, model, device, criterion, optimizer, train_loader, "logs/log.csv", "outputs/figures/plot.png") | ||
eval(model, device) | ||
main("config/config.yaml") |