Skip to content

Commit

Permalink
Reimport examples from OSCAR book
Browse files Browse the repository at this point in the history
  • Loading branch information
lkastner committed Oct 15, 2024
1 parent 1ce4c12 commit 6ee7b58
Show file tree
Hide file tree
Showing 38 changed files with 189 additions and 266 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ julia> degree(X)
9

julia> S = ambient_coordinate_ring(X)
Multivariate polynomial ring in 5 variables over GF(31991) graded by
Multivariate polynomial ring in 5 variables over GF(31991) graded by
x -> [1]
y -> [1]
z -> [1]
Expand Down
2 changes: 1 addition & 1 deletion test/book/cornerstones/algebraic-geometry/ex21a.jlcon
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
julia> J1 = ideal([H(I[1]), H(I[2])])
julia> J1 = ideal([H(I[1]), H(I[2])])
Ideal generated by
x0*x2 - x1^2
x0*x3 - x1*x2
Expand Down
5 changes: 2 additions & 3 deletions test/book/cornerstones/algebraic-geometry/ex23a.jlcon
Original file line number Diff line number Diff line change
Expand Up @@ -12,11 +12,10 @@ julia> other_pos_abs = pos_abs == 1 ? 2 : 1
julia> cI2 = cIabs[other_pos_abs][3]
Ideal generated by
648*y + (-160*_a^3 - 1269*_a^2 + 22446*_a + 972)*z
184147758075888*x + (2850969000960*_a^3 + 22611747888864*_a^2 - 399955313722176*_a - 17319636680832)*y + (2884707374400*_a^3 + 2
2782606070410*_a^2 - 405172045313820*_a - 57843867366864)*z
184147758075888*x + (2850969000960*_a^3 + 22611747888864*_a^2 - 399955313722176*_a - 17319636680832)*y + (2884707374400*_a^3 + 22782606070410*_a^2 - 405172045313820*_a - 57843867366864)*z

julia> R2 = base_ring(cI2)
Multivariate polynomial ring in 3 variables over number field graded by
Multivariate polynomial ring in 3 variables over number field graded by
x -> [1]
y -> [1]
z -> [1]
Expand Down
2 changes: 0 additions & 2 deletions test/book/cornerstones/algebraic-geometry/ex314.jlcon
Original file line number Diff line number Diff line change
Expand Up @@ -68,13 +68,11 @@ M1 -> M
e[1] -> (-x_0*x_3 + x_1*x_2)*e[1]
Graded module homomorphism of degree [2]


julia> phi2 = psi(tohomM1M(hom1[2]))
M1 -> M
e[1] -> (-x_0*x_2 + x_1^2)*e[1]
Graded module homomorphism of degree [2]


julia> kerphi2, _ = kernel(phi2);

julia> iszero(kerphi2)
Expand Down
20 changes: 10 additions & 10 deletions test/book/cornerstones/algebraic-geometry/exres.jlcon
Original file line number Diff line number Diff line change
@@ -1,25 +1,25 @@
julia> R, (w, x, y, z) = graded_polynomial_ring(QQ, ["w", "x", "y", "z"]);
julia> S, (w, x, y, z) = graded_polynomial_ring(QQ, ["w", "x", "y", "z"]);

julia> I = ideal([w^2-x*z,w*x-y*z,x^2-w*y,x*y-z^2,y^2-w*z]);
julia> J = ideal([w^2-x*z,w*x-y*z,x^2-w*y,x*y-z^2,y^2-w*z]);

julia> A, _ = quo(R, I);
julia> A, _ = quo(S, J);

julia> FA = free_resolution(A)
Free resolution of A
R^1 <---- R^5 <---- R^6 <---- R^2 <---- 0
S^1 <---- S^5 <---- S^6 <---- S^2 <---- 0
0 1 2 3 4

julia> FA[1]
Graded free module R^5([-2]) of rank 5 over R
Graded free module S^5([-2]) of rank 5 over S

julia> FA[2]
Graded free module R^5([-3]) + R^1([-4]) of rank 6 over R
Graded free module S^5([-3]) + S^1([-4]) of rank 6 over S

julia> FA[3]
Graded free module R^1([-4]) + R^1([-5]) of rank 2 over R
Graded free module S^1([-4]) + S^1([-5]) of rank 2 over S

julia> map(FA,1)
R^5 -> R^1
S^5 -> S^1
e[1] -> (-w*z + y^2)*e[1]
e[2] -> (x*y - z^2)*e[1]
e[3] -> (-w*y + x^2)*e[1]
Expand All @@ -28,7 +28,7 @@ e[5] -> (w^2 - x*z)*e[1]
Homogeneous module homomorphism

julia> map(FA,2)
R^6 -> R^5
S^6 -> S^5
e[1] -> -x*e[1] + y*e[2] - z*e[4]
e[2] -> w*e[1] - x*e[2] + y*e[3] + z*e[5]
e[3] -> -w*e[3] + x*e[4] - y*e[5]
Expand All @@ -38,7 +38,7 @@ e[6] -> (-w^2 + x*z)*e[1] + (-w*z + y^2)*e[5]
Homogeneous module homomorphism

julia> map(FA,3)
R^2 -> R^6
S^2 -> S^6
e[1] -> -w*e[2] - y*e[3] + x*e[4] - e[6]
e[2] -> (-w^2 + x*z)*e[1] + y*z*e[2] + z^2*e[3] - w*y*e[4] + (w*z - y^2)*e[5] + x*e[6]
Homogeneous module homomorphism
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
julia> R, (w,x,y,z) = graded_polynomial_ring(QQ, ["w", "x", "y", "z"]);
julia> S, (w,x,y,z) = graded_polynomial_ring(QQ, ["w", "x", "y", "z"]);

julia> I = ideal(R, [x*w-y*z, y*w-(x-z)*(x-2*z)]);
julia> I = ideal(S, [x*w-y*z, y*w-(x-z)*(x-2*z)]);

julia> Q = projective_scheme(I);

Expand Down
3 changes: 1 addition & 2 deletions test/book/cornerstones/algebraic-geometry/param.jlcon
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,7 @@ julia> f = x^5 + 10*x^4*y + 20*x^3*y^2 + 130*x^2*y^3 - 20*x*y^4 + 20*y^5 - 2*x^4

julia> C = plane_curve(f)
Projective plane curve
defined by 0 = x^5 + 10*x^4*y - 2*x^4*z + 20*x^3*y^2 - 40*x^3*y*z + x^3*z^2 + 130*x^2*y^3 - 150*x^2*y^2*z + 30*x^2*y*z^2 - 20*x*
y^4 - 90*x*y^3*z + 110*x*y^2*z^2 + 20*y^5 - 40*y^4*z + 20*y^3*z^2
defined by 0 = x^5 + 10*x^4*y - 2*x^4*z + 20*x^3*y^2 - 40*x^3*y*z + x^3*z^2 + 130*x^2*y^3 - 150*x^2*y^2*z + 30*x^2*y*z^2 - 20*x*y^4 - 90*x*y^3*z + 110*x*y^2*z^2 + 20*y^5 - 40*y^4*z + 20*y^3*z^2

julia> conics = [x^2-x*z, y^2-y*z];

Expand Down
13 changes: 5 additions & 8 deletions test/book/cornerstones/groups/actions.jlcon
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,7 @@ G-set of
Alt(4)
with seeds 1:4

julia> G = dihedral_group(6)
Pc group of order 6
julia> G = dihedral_group(6);

julia> U = sub(G, [g for g in gens(G) if order(g) == 2])[1]
Pc group of order 2
Expand Down Expand Up @@ -37,7 +36,7 @@ Group homomorphism
julia> phi(G[1]), phi(G[2])
((2,3), (1,2,3))

julia> function optimal_perm_rep(G)
julia> function optimal_transitive_perm_rep(G)
is_natural_symmetric_group(G) && return hom(G,G,gens(G))
is_natural_alternating_group(G) && return hom(G,G,gens(G))
cand = [] # pairs (U,h) with U ≤ G and h a map G -> Sym(G/U)
Expand All @@ -52,7 +51,7 @@ julia> function optimal_perm_rep(G)
julia> U = dihedral_group(8)
Pc group of order 8

julia> optimal_perm_rep(U)
julia> optimal_transitive_perm_rep(U)
Group homomorphism
from pc group of order 8
to permutation group of degree 4 and order 8
Expand All @@ -65,8 +64,8 @@ Group homomorphism
julia> permutation_group(U)
Permutation group of degree 8 and order 8

julia> for g in all_transitive_groups(degree => 3:9, !is_primitive)
h = image(optimal_perm_rep(g))[1]
julia> for g in all_transitive_groups(degree => 3:8, !is_primitive)
h = image(optimal_transitive_perm_rep(g))[1]
if degree(h) < degree(g)
id = transitive_group_identification(g)
id_new = transitive_group_identification(h)
Expand All @@ -81,5 +80,3 @@ julia> for g in all_transitive_groups(degree => 3:9, !is_primitive)
(8, 13) => (6, 6)
(8, 14) => (4, 5)
(8, 24) => (6, 11)
(9, 4) => (6, 5)
(9, 8) => (6, 9)
46 changes: 31 additions & 15 deletions test/book/cornerstones/groups/explSL25.jlcon
Original file line number Diff line number Diff line change
Expand Up @@ -4,21 +4,37 @@ SL(2,5)
julia> T = character_table(G)
Character table of SL(2,5)

2 3 1 1 3 1 1 1 1 2
3 1 . . 1 . . 1 1 .
5 1 1 1 1 1 1 . . .

1a 10a 10b 2a 5a 5b 3a 6a 4a

X_1 1 1 1 1 1 1 1 1 1
X_2 2 z_5^3 + z_5^2 + 1 -z_5^3 - z_5^2 -2 -z_5^3 - z_5^2 - 1 z_5^3 + z_5^2 -1 1 .
X_3 2 -z_5^3 - z_5^2 z_5^3 + z_5^2 + 1 -2 z_5^3 + z_5^2 -z_5^3 - z_5^2 - 1 -1 1 .
X_4 3 -z_5^3 - z_5^2 z_5^3 + z_5^2 + 1 3 -z_5^3 - z_5^2 z_5^3 + z_5^2 + 1 . . -1
X_5 3 z_5^3 + z_5^2 + 1 -z_5^3 - z_5^2 3 z_5^3 + z_5^2 + 1 -z_5^3 - z_5^2 . . -1
X_6 4 -1 -1 4 -1 -1 1 1 .
X_7 4 1 1 -4 -1 -1 1 -1 .
X_8 5 . . 5 . . -1 -1 1
X_9 6 -1 -1 -6 1 1 . . .
2 3 1 1 3 1
3 1 . . 1 .
5 1 1 1 1 1

1a 10a 10b 2a 5a

X_1 1 1 1 1 1
X_2 2 z_5^3 + z_5^2 + 1 -z_5^3 - z_5^2 -2 -z_5^3 - z_5^2 - 1
X_3 2 -z_5^3 - z_5^2 z_5^3 + z_5^2 + 1 -2 z_5^3 + z_5^2
X_4 3 -z_5^3 - z_5^2 z_5^3 + z_5^2 + 1 3 -z_5^3 - z_5^2
X_5 3 z_5^3 + z_5^2 + 1 -z_5^3 - z_5^2 3 z_5^3 + z_5^2 + 1
X_6 4 -1 -1 4 -1
X_7 4 1 1 -4 -1
X_8 5 . . 5 .
X_9 6 -1 -1 -6 1

2 1 1 1 2
3 . 1 1 .
5 1 . . .

5b 3a 6a 4a

X_1 1 1 1 1
X_2 z_5^3 + z_5^2 -1 1 .
X_3 -z_5^3 - z_5^2 - 1 -1 1 .
X_4 z_5^3 + z_5^2 + 1 . . -1
X_5 -z_5^3 - z_5^2 . . -1
X_6 -1 1 1 .
X_7 -1 1 -1 .
X_8 . -1 -1 1
X_9 1 . . .

julia> R = gmodule(T[end])
G-module for G acting on vector space of dimension 6 over abelian closure of Q
Expand Down
99 changes: 51 additions & 48 deletions test/book/cornerstones/groups/genchar.jlcon
Original file line number Diff line number Diff line change
@@ -1,63 +1,66 @@
julia> T = genchartab("SL3.n1")
Generic character table
julia> T = generic_character_table("SL3.n1")
Generic character table SL3.n1
of order q^8 - q^6 - q^5 + q^3
with 8 irreducible character types
with 8 class types
with parameters (a, b, m, n)

julia> printval(T,char=4,class=4)
Value of character type 4 on class type
4: (q + 1) * exp(2π𝑖(1//(q - 1)*a*n)) + (1) * exp(2π𝑖(-2//(q - 1)*a*n))

julia> h = tensor!(T,2,2)
9

julia> scalar(T,4,h)
(0, Set(ParameterException{QQPolyRingElem}[(2*n1)//(q - 1) ∈ ℤ]))

julia> print_decomposition(T, h)
Decomposing character 9:
<1,9> = 1
<2,9> = 2
<3,9> = 2
<4,9> = 0 with possible exceptions:
(2*n1)//(q - 1) ∈ ℤ
<5,9> = 0 with possible exceptions:
(2*n1)//(q - 1) ∈ ℤ
<6,9> = 0 with possible exceptions:
(m1 + n1)//(q - 1) ∈ ℤ
(2*m1 - n1)//(q - 1) ∈ ℤ
(m1)//(q - 1) ∈ ℤ
(n1)//(q - 1) ∈ ℤ
(m1 - n1)//(q - 1) ∈ ℤ
(m1 - 2*n1)//(q - 1) ∈ ℤ
<7,9> = 0 with possible exceptions:
(n1)//(q - 1) ∈ ℤ
<8,9> = 0 with possible exceptions:
((q + 1)*n1)//(q^2 + q + 1) ∈ ℤ
(q*n1)//(q^2 + q + 1) ∈ ℤ
(n1)//(q^2 + q + 1) ∈ ℤ
julia> chardeg(T, lincomb!(T,[1,2,2],[1,2,3]))
julia> T[4,4]
(q + 1)*exp(2π𝑖((a*n)//(q - 1))) + exp(2π𝑖((-2*a*n)//(q - 1)))

julia> h = T[2] * T[2];

julia> scalar_product(T[4], h)
0
With exceptions:
2*n1 ∈ (q - 1)ℤ

julia> for i in 1:8 println("<$i, h> = ", scalar_product(T[i], h)) end
<1, h> = 1
<2, h> = 2
<3, h> = 2
<4, h> = 0
With exceptions:
2*n1 ∈ (q - 1)ℤ
<5, h> = 0
With exceptions:
2*n1 ∈ (q - 1)ℤ
<6, h> = 0
With exceptions:
2*m1 - n1 ∈ (q - 1)ℤ
m1 - 2*n1 ∈ (q - 1)ℤ
m1 + n1 ∈ (q - 1)ℤ
m1 ∈ (q - 1)ℤ
m1 - n1 ∈ (q - 1)ℤ
n1 ∈ (q - 1)ℤ
<7, h> = 0
With exceptions:
n1 ∈ (q - 1)ℤ
<8, h> = 0
With exceptions:
q*n1 ∈ (q^2 + q + 1)ℤ
n1 ∈ (q^2 + q + 1)ℤ
q*n1 + n1 ∈ (q^2 + q + 1)ℤ

julia> degree(linear_combination([1,2,2],[T[1],T[2],T[3]]))
2*q^3 + 2*q^2 + 2*q + 1

julia> chardeg(T, h)
julia> degree(h)
q^4 + 2*q^3 + q^2

julia> printcharparam(T,4)
4 n ∈ {1,…, q - 1} except (n)//(q - 1)
julia> parameters(T[4])
n ∈ {1,…, q - 1} except n ∈ (q - 1)ℤ

julia> T2 = setcongruence(T, (0,2));
julia> T2 = set_congruence(T; remainder=0, modulus=2);

julia> (q, (a, b, m, n)) = params(T2);
julia> (q, (a, b, m, n)) = parameters(T2);

julia> x = param(T2, "x"); # create an additional "free" variable
julia> x = parameter(T2, "x"); # create an additional "free" variable

julia> speccharparam!(T2, 6, m, -n + (q-1)*x) # force m = -n (mod q-1)
julia> s = specialize(T2[6], m, -n + (q-1)*x); # force m = -n (mod q-1)

julia> s, e = scalar(T2,6,h); s
julia> scalar_product(s, T2(h))
1

julia> e
Set{ParameterException{QQPolyRingElem}} with 2 elements:
(2*n1)//(q - 1) ∈ ℤ
(3*n1)//(q - 1) ∈ ℤ
With exceptions:
3*n1 ∈ (q - 1)ℤ
2*n1 ∈ (q - 1)ℤ
8 changes: 1 addition & 7 deletions test/book/cornerstones/groups/intro.jlcon
Original file line number Diff line number Diff line change
Expand Up @@ -62,13 +62,7 @@ julia> pts = collect(orb)

julia> visualize(convex_hull(pts))

julia> R2 = free_module(K, 2) # the "euclidean" plane over K
Vector space of dimension 2 over field of algebraic numbers

julia> A = R2([0,1])
(Root 0 of x, Root 1.00000 of x - 1)

julia> pts = [A*mat_rot^i for i in 0:4];
julia> R2 = vector_space(K, 2); # the "euclidean" plane over K

julia> sigma_1 = hom(R2, R2, [-R2[1], R2[2]])
Module homomorphism
Expand Down
2 changes: 1 addition & 1 deletion test/book/cornerstones/number-theory/galoismod.jlcon
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
julia> Oscar.randseed!(7360734);
julia> Oscar.randseed!(3371100);

julia> Qx, x = QQ["x"];

Expand Down
17 changes: 3 additions & 14 deletions test/book/cornerstones/number-theory/intro.jlcon
Original file line number Diff line number Diff line change
Expand Up @@ -39,13 +39,7 @@ julia> discriminant(OK)
julia> prime_ideals_over(OK, 7)
2-element Vector{AbsSimpleNumFieldOrderIdeal}:
<7, a + 5>
Norm: 7
Minimum: 7
two normal wrt: 7
<7, a + 2>
Norm: 7
Minimum: 7
two normal wrt: 7

julia> factor(change_coefficient_ring(GF(7), x^2 - 235))
1 * (x + 5) * (x + 2)
Expand All @@ -62,16 +56,11 @@ Z/6

julia> m(zero(A)) # apply m to the neutral element of A
<1, 1>
Norm: 1
Minimum: 1
principal generator 1
two normal wrt: 1
[...]

julia> P = prime_ideals_over(OK, 2)[1]
<2, a + 1>
Norm: 2
Minimum: 2
two normal wrt: 2
[...]

julia> preimage(m, P)
Abelian group element [3]
Expand All @@ -94,4 +83,4 @@ julia> preimage(mU, -214841715*a - 3293461126)
Abelian group element [1, 5]

julia> -214841715*a - 3293461126 == (-1)^1 * (3a + 46)^5
true
true
Loading

0 comments on commit 6ee7b58

Please sign in to comment.