Skip to content

Commit

Permalink
[Feature] Add Mask2Former to mmdet (#6938)
Browse files Browse the repository at this point in the history
update doc

update doc format

deepcopy pixel_decoder cfg

move mask_pseudo_sampler cfg to config file

move part of postprocess from head to detector

fix bug in postprocessing

move class setting from head to config file

remove if else

move mask2bbox to mask/util

update docstring

update docstring in result2json

fix bug

update class_weight

add maskformer_fusion_head

add maskformer fusion head

update

add cfg for filter_low_score

update maskformer

update class_weight

update config

update unit test

rename param

update comments in config

rename variable, rm arg, update unit tests

update mask2bbox

add unit test for mask2bbox

replace unsqueeze(1) and squeeze(1)

add unit test for maskformer_fusion_head

update docstrings

update docstring

delete \

remove modification to ce loss

update docstring

update docstring

update docstring of ce loss

update unit test

update docstring

update docstring

update docstring

rename

rename

add msdeformattn pixel decoder

maskformer refactor

add strides in config

remove redundant code

remove redundant code

update unit test

update config

update
  • Loading branch information
chhluo authored Mar 25, 2022
1 parent fc8fb16 commit 14f0e95
Show file tree
Hide file tree
Showing 13 changed files with 1,212 additions and 9 deletions.
253 changes: 253 additions & 0 deletions configs/mask2former/mask2former_r50_lsj_8x2_50e_coco.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,253 @@
_base_ = [
'../_base_/datasets/coco_panoptic.py', '../_base_/default_runtime.py'
]
num_things_classes = 80
num_stuff_classes = 53
num_classes = num_things_classes + num_stuff_classes
model = dict(
type='Mask2Former',
backbone=dict(
type='ResNet',
depth=50,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
panoptic_head=dict(
type='Mask2FormerHead',
in_channels=[256, 512, 1024, 2048], # pass to pixel_decoder inside
strides=[4, 8, 16, 32],
feat_channels=256,
out_channels=256,
num_things_classes=num_things_classes,
num_stuff_classes=num_stuff_classes,
num_queries=100,
num_transformer_feat_level=3,
pixel_decoder=dict(
type='MSDeformAttnPixelDecoder',
num_outs=3,
norm_cfg=dict(type='GN', num_groups=32),
act_cfg=dict(type='ReLU'),
encoder=dict(
type='DetrTransformerEncoder',
num_layers=6,
transformerlayers=dict(
type='BaseTransformerLayer',
attn_cfgs=dict(
type='MultiScaleDeformableAttention',
embed_dims=256,
num_heads=8,
num_levels=3,
num_points=4,
im2col_step=64,
dropout=0.0,
batch_first=False,
norm_cfg=None,
init_cfg=None),
ffn_cfgs=dict(
type='FFN',
embed_dims=256,
feedforward_channels=1024,
num_fcs=2,
ffn_drop=0.0,
act_cfg=dict(type='ReLU', inplace=True)),
operation_order=('self_attn', 'norm', 'ffn', 'norm')),
init_cfg=None),
positional_encoding=dict(
type='SinePositionalEncoding', num_feats=128, normalize=True),
init_cfg=None),
enforce_decoder_input_project=False,
positional_encoding=dict(
type='SinePositionalEncoding', num_feats=128, normalize=True),
transformer_decoder=dict(
type='DetrTransformerDecoder',
return_intermediate=True,
num_layers=9,
transformerlayers=dict(
type='DetrTransformerDecoderLayer',
attn_cfgs=dict(
type='MultiheadAttention',
embed_dims=256,
num_heads=8,
attn_drop=0.0,
proj_drop=0.0,
dropout_layer=None,
batch_first=False),
ffn_cfgs=dict(
embed_dims=256,
feedforward_channels=2048,
num_fcs=2,
act_cfg=dict(type='ReLU', inplace=True),
ffn_drop=0.0,
dropout_layer=None,
add_identity=True),
feedforward_channels=2048,
operation_order=('cross_attn', 'norm', 'self_attn', 'norm',
'ffn', 'norm')),
init_cfg=None),
loss_cls=dict(
type='CrossEntropyLoss',
use_sigmoid=False,
loss_weight=2.0,
reduction='mean',
class_weight=[1.0] * num_classes + [0.1]),
loss_mask=dict(
type='CrossEntropyLoss',
use_sigmoid=True,
reduction='mean',
loss_weight=5.0),
loss_dice=dict(
type='DiceLoss',
use_sigmoid=True,
activate=True,
reduction='mean',
naive_dice=True,
eps=1.0,
loss_weight=5.0)),
panoptic_fusion_head=dict(
type='MaskFormerFusionHead',
num_things_classes=num_things_classes,
num_stuff_classes=num_stuff_classes,
loss_panoptic=None,
init_cfg=None),
train_cfg=dict(
num_points=12544,
oversample_ratio=3.0,
importance_sample_ratio=0.75,
assigner=dict(
type='MaskHungarianAssigner',
cls_cost=dict(type='ClassificationCost', weight=2.0),
mask_cost=dict(
type='CrossEntropyLossCost', weight=5.0, use_sigmoid=True),
dice_cost=dict(
type='DiceCost', weight=5.0, pred_act=True, eps=1.0)),
sampler=dict(type='MaskPseudoSampler')),
test_cfg=dict(
panoptic_on=True,
# For now, the dataset does not support
# evaluating semantic segmentation metric.
semantic_on=False,
instance_on=True,
# max_per_image is for instance segmentation.
max_per_image=100,
iou_thr=0.8,
# In Mask2Former's panoptic postprocessing,
# it will filter mask area where score is less than 0.5 .
filter_low_score=True),
init_cfg=None)

# dataset settings
image_size = (1024, 1024)
img_norm_cfg = dict(
mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
dict(type='LoadImageFromFile', to_float32=True),
dict(
type='LoadPanopticAnnotations',
with_bbox=True,
with_mask=True,
with_seg=True),
dict(type='RandomFlip', flip_ratio=0.5),
# large scale jittering
dict(
type='Resize',
img_scale=image_size,
ratio_range=(0.1, 2.0),
multiscale_mode='range',
keep_ratio=True),
dict(
type='RandomCrop',
crop_size=image_size,
crop_type='absolute',
recompute_bbox=True,
allow_negative_crop=True),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size=image_size),
dict(type='DefaultFormatBundle', img_to_float=True),
dict(
type='Collect',
keys=['img', 'gt_bboxes', 'gt_labels', 'gt_masks', 'gt_semantic_seg']),
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(
type='MultiScaleFlipAug',
img_scale=(1333, 800),
flip=False,
transforms=[
dict(type='Resize', keep_ratio=True),
dict(type='RandomFlip'),
dict(type='Normalize', **img_norm_cfg),
dict(type='Pad', size_divisor=32),
dict(type='ImageToTensor', keys=['img']),
dict(type='Collect', keys=['img']),
])
]
data_root = 'data/coco/'
data = dict(
samples_per_gpu=2,
workers_per_gpu=2,
train=dict(pipeline=train_pipeline),
val=dict(
pipeline=test_pipeline,
ins_ann_file=data_root + 'annotations/instances_val2017.json',
),
test=dict(
pipeline=test_pipeline,
ins_ann_file=data_root + 'annotations/instances_val2017.json',
))

embed_multi = dict(lr_mult=1.0, decay_mult=0.0)
# optimizer
optimizer = dict(
type='AdamW',
lr=0.0001,
weight_decay=0.05,
eps=1e-8,
betas=(0.9, 0.999),
paramwise_cfg=dict(
custom_keys={
'backbone': dict(lr_mult=0.1, decay_mult=1.0),
'query_embed': embed_multi,
'query_feat': embed_multi,
'level_embed': embed_multi,
},
norm_decay_mult=0.0))
optimizer_config = dict(grad_clip=dict(max_norm=0.01, norm_type=2))

# learning policy
lr_config = dict(
policy='step',
gamma=0.1,
by_epoch=False,
step=[327778, 355092],
warmup='linear',
warmup_by_epoch=False,
warmup_ratio=1.0, # no warmup
warmup_iters=10)

max_iters = 368750
runner = dict(type='IterBasedRunner', max_iters=max_iters)

log_config = dict(
interval=50,
hooks=[
dict(type='TextLoggerHook', by_epoch=False),
dict(type='TensorboardLoggerHook', by_epoch=False)
])
interval = 200000
workflow = [('train', interval)]
checkpoint_config = dict(
by_epoch=False, interval=interval, save_last=True, max_keep_ckpts=3)

# Before 365001th iteration, we do evaluation every 200000 iterations.
# After 365000th iteration, we do evaluation every 368750 iterations,
# which means do evaluation at the end of training.
# In all, we do evaluation at the 200000th iteration and the
# last iteratoin.
dynamic_intervals = [(max_iters // interval * interval + 1, max_iters)]
evaluation = dict(
interval=interval, dynamic_intervals=dynamic_intervals, metric='PQ')
Original file line number Diff line number Diff line change
@@ -0,0 +1,62 @@
_base_ = ['./mask2former_r50_lsj_8x2_50e_coco.py']
pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_tiny_patch4_window7_224.pth' # noqa

depths = [2, 2, 6, 2]
model = dict(
type='Mask2Former',
backbone=dict(
_delete_=True,
type='SwinTransformer',
embed_dims=96,
depths=depths,
num_heads=[3, 6, 12, 24],
window_size=7,
mlp_ratio=4,
qkv_bias=True,
qk_scale=None,
drop_rate=0.,
attn_drop_rate=0.,
drop_path_rate=0.3,
patch_norm=True,
out_indices=(0, 1, 2, 3),
with_cp=False,
convert_weights=True,
frozen_stages=-1,
init_cfg=dict(type='Pretrained', checkpoint=pretrained)),
panoptic_head=dict(
type='Mask2FormerHead', in_channels=[96, 192, 384, 768]),
init_cfg=None)

# set all layers in backbone to lr_mult=0.1
# set all norm layers, position_embeding,
# query_embeding, level_embeding to decay_multi=0.0
backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0)
backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0)
embed_multi = dict(lr_mult=1.0, decay_mult=0.0)
custom_keys = {
'backbone': dict(lr_mult=0.1, decay_mult=1.0),
'backbone.patch_embed.norm': backbone_norm_multi,
'backbone.norm': backbone_norm_multi,
'absolute_pos_embed': backbone_embed_multi,
'relative_position_bias_table': backbone_embed_multi,
'query_embed': embed_multi,
'query_feat': embed_multi,
'level_embed': embed_multi
}
custom_keys.update({
f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi
for stage_id, num_blocks in enumerate(depths)
for block_id in range(num_blocks)
})
custom_keys.update({
f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi
for stage_id in range(len(depths) - 1)
})
# optimizer
optimizer = dict(
type='AdamW',
lr=0.0001,
weight_decay=0.05,
eps=1e-8,
betas=(0.9, 0.999),
paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))
6 changes: 3 additions & 3 deletions mmdet/core/bbox/match_costs/__init__.py
Original file line number Diff line number Diff line change
@@ -1,9 +1,9 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .builder import build_match_cost
from .match_cost import (BBoxL1Cost, ClassificationCost, DiceCost,
FocalLossCost, IoUCost)
from .match_cost import (BBoxL1Cost, ClassificationCost, CrossEntropyLossCost,
DiceCost, FocalLossCost, IoUCost)

__all__ = [
'build_match_cost', 'ClassificationCost', 'BBoxL1Cost', 'IoUCost',
'FocalLossCost', 'DiceCost'
'FocalLossCost', 'DiceCost', 'CrossEntropyLossCost'
]
Loading

0 comments on commit 14f0e95

Please sign in to comment.