Pytorch implementation of ProtoAU for recommendation. We present the Prototypical contrastive learning through Alignment and Uniformity for recommendation, which is called ProtoAU. A contrastive learning method for recommendation that excels in capturing intricate relationships between user and item interactions, which enhance the basic GNN-based recommendation model's generalization ability and robustness.
Thanks for following our work! :)
There are two environment you can choose: nvidia-docker environment or normal environment.
- For nvidia-docker users, you need to install nvidia-docker2 and restart docker service.
# docker env
docker build -t protoau .
docker run -itd --gpus all --name protoau
docker exec -it protoau /bin/bash # enter the container
- For normal users, you need to install pytorch and other packages. here we use follow environment:
- Python 3.6
- Pytorch 1.9 (GPU version)
- CUDA 11.1
- cudnn 8
then run follow command to install other packages:
pip install -r requirements.txt
-
Arguments:
- Config the model arguments in
conf/ProtoAU.yaml
- Config the model arguments in
-
Train:
# train
nohup python index.py --gpu_id=0 --model=ProtoAU --run_name=ProtoAU --dataset=yelp2018 > ./0.log 2>&1 &
# Parallel train(optional)
wandb sweep --project sweep_parallel ./sweep/ProtoAU.yaml # step 1
wandb agent --count 5 oceanlvr/sweep_parallel/[xxx] # replace the [xxx] with your sweep id (step 1 generated)
- For all metric results, you could see the output in the
./0.log
file or the wandb dashboard. - For visualizing the results, run python3
visualize/feature.py
.
DataSet | ||||
---|---|---|---|---|
Users | Items | Ratings | Density | |
Douban | 2,848 | 39,586 | 894,887 | 0.794% |
LastFM | 1,892 | 17,632 | 92,834 | 0.27% |
Yelp | 19,539 | 21,266 | 450,884 | 0.11% |
Amazon-Book | 52,463 | 91,599 | 2,984,108 | 0.11% |
Please cite our paper ieeexplore.ieee.org/document/10650218 if you use this code.