Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Match infections per node #10

Merged
merged 6 commits into from
Nov 8, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
155 changes: 155 additions & 0 deletions fitting_ipn.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,155 @@
{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%load_ext autoreload\n",
"%autoreload 2"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"from lcs import *\n",
"import networkx as nx"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"G = nx.karate_club_graph()\n",
"A = nx.adjacency_matrix(G, weight=None).todense()\n",
"n = A.shape[0]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"b0 = 0.5\n",
"a = 0.01\n",
"alpha = 1\n",
"max_iter = 100\n",
"tol = 1e-3\n",
"\n",
"cf1 = lambda nu, b: 1 - (1 - b) ** nu\n",
"cf2 = lambda nu, b: b * (nu >= 2)\n",
"\n",
"gamma = 0.1\n",
"b = 0.03\n",
"rho0 = 1\n",
"tmax = 1000\n",
"\n",
"realizations = 100\n",
"\n",
"x0 = np.zeros(n)\n",
"x0[list(random.sample(range(n), int(rho0 * n)))] = 1\n",
"c1 = cf1(np.arange(n), b)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# mean fitting\n",
"mode = \"mean\"\n",
"ipn_c1 = 0\n",
"for _ in range(realizations):\n",
" x = contagion_process(A, gamma, c1, x0, tmin=0, tmax=tmax)\n",
" ipn_c1 += infections_per_node(x, mode) / realizations\n",
"\n",
"f = lambda b: ipn_func(b, ipn_c1, cf2, gamma, A, rho0, 100, tmax, mode)\n",
"b1, bvec1, fvec1 = robbins_monro_solve(\n",
" f, b0, a, alpha, max_iter, tol, verbose=True, loss=\"function\", return_values=True\n",
")\n",
"\n",
"# median fitting\n",
"mode = \"median\"\n",
"ipn_c1 = 0\n",
"for _ in range(realizations):\n",
" x = contagion_process(A, gamma, c1, x0, tmin=0, tmax=tmax)\n",
" ipn_c1 += infections_per_node(x, mode) / realizations\n",
"\n",
"f = lambda b: ipn_func(b, ipn_c1, cf2, gamma, A, rho0, 100, tmax, mode)\n",
"b2, bvec2, fvec2 = robbins_monro_solve(\n",
" f, b0, a, alpha, max_iter, tol, verbose=True, loss=\"function\", return_values=True\n",
")\n",
"\n",
"# max fitting\n",
"mode = \"max\"\n",
"ipn_c1 = 0\n",
"for _ in range(realizations):\n",
" x = contagion_process(A, gamma, c1, x0, tmin=0, tmax=tmax)\n",
" ipn_c1 += infections_per_node(x, mode) / realizations\n",
"\n",
"f = lambda b: ipn_func(b, ipn_c1, cf2, gamma, A, rho0, 100, tmax, mode)\n",
"b3, bvec3, fvec3 = robbins_monro_solve(\n",
" f, b0, a, alpha, max_iter, tol, verbose=True, loss=\"function\", return_values=True\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plt.figure()\n",
"plt.subplot(121)\n",
"plt.plot(bvec1, label=\"mean\")\n",
"plt.plot(bvec2, label=\"median\")\n",
"plt.plot(bvec3, label=\"max\")\n",
"plt.xlabel(\"iterations\")\n",
"plt.ylabel(\"fitted probability\")\n",
"\n",
"plt.subplot(122)\n",
"plt.plot(fvec1, label=\"mean\")\n",
"plt.plot(fvec2, label=\"median\")\n",
"plt.plot(fvec3, label=\"max\")\n",
"plt.legend()\n",
"plt.xlabel(\"iterations\")\n",
"plt.ylabel(\"diff. between expected IPNs\")\n",
"plt.tight_layout()\n",
"\n",
"plt.savefig(\"test.png\", dpi=1000)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "hyper",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.0"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
64 changes: 62 additions & 2 deletions lcs/contagion.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,66 @@ def contagion_process(A, gamma, c, x0, tmin=0, tmax=20, dt=1, random_seed=None):
if not isinstance(A, ndarray):
A = A.todense()

if A.dtype != "int":
A = np.array(A, dtype=int)

if random_seed is not None:
np.random.seed(random_seed)

n, m = np.shape(A)
if n != m:
raise Exception("Matrix must be square!")

T = int((tmax - tmin) / dt)
x = np.zeros((T, n), dtype=int)
x[0] = x0.copy()

for t in range(T - 1):
u = np.random.random(n)
nu = A @ x[t]
x[t + 1] = (1 - x[t]) * (u <= c[nu] * dt) + x[t] * (u > gamma * dt)
return x


def contagion_process_loop(A, gamma, c, x0, tmin=0, tmax=20, dt=1, random_seed=None):
"""A neighborhood-based contagion process on pairwise networks

Parameters
----------
A : Numpy ndarray
The adjacency matrix
gamma : float
The healing rate
c : Numpy ndarray
A 1d vector of the contagion rates. Should be N x 1.
x0 : Numpy ndarray
A 1D vector of the initial nodal states, either 0 or 1.
Should be N x 1.
tmin : int, optional
The time at which to start the simulation, by default 0
tmax : float, optional
The time at which to terminate the simulation, by default 20
dt : float, optional
The time step, by default 1
random_seed : int, optional
The seed for the random process, by default None

Returns
-------
Numpy ndarray
The time series of the contagion process. Should be T x N.

Raises
------
Exception
If adjacency matrix isn't square
"""
if not isinstance(A, ndarray):
A = A.todense()

if A.dtype != "int":
A = np.array(A, dtype=int)

if random_seed is not None:
random.seed(random_seed)

Expand All @@ -48,7 +108,7 @@ def contagion_process(A, gamma, c, x0, tmin=0, tmax=20, dt=1, random_seed=None):
raise Exception("Matrix must be square!")

T = int((tmax - tmin) / dt)
x = np.zeros((T, n))
x = np.zeros((T, n), dtype=int)
x[0] = x0.copy()

for t in range(T - 1):
Expand All @@ -59,7 +119,7 @@ def contagion_process(A, gamma, c, x0, tmin=0, tmax=20, dt=1, random_seed=None):
if x[t, i] == 1 and random.random() <= gamma * dt:
x[t + 1, i] = 0
elif x[t, i] == 0:
infected_nbrs = int(np.round(A[i] @ x[t]))
infected_nbrs = A[i] @ x[t]
if random.random() <= c[infected_nbrs] * dt:
x[t + 1, i] = 1
return x
Loading
Loading