Skip to content

Code and results accompanying paper: "Crossing the Linguistic Causeway: Ethno-national Differences on Soundscape Attributes in Bahasa Melayu"

License

Notifications You must be signed in to change notification settings

ntudsp/satp-zsm-stage2

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

<script src="README_files/libs/kePrint-0.0.1/kePrint.js"></script>

Replication code for “Crossing the Linguistic Causeway: Ethno-national Differences on Soundscape Attributes in Bahasa Melayu”

Setup Environment

R version 4.1.1 (2021-08-10)

Platform: aarch64-apple-darwin20 (64-bit)

locale: en_US.UTF-8||en_US.UTF-8||en_US.UTF-8||C||en_US.UTF-8||en_US.UTF-8

attached base packages: stats, graphics, grDevices, utils, datasets, methods and base

other attached packages: CircE(v.1.1), circumplex(v.0.3.8), RTHORR(v.0.1.2), gdata(v.2.18.0), ggthemes(v.4.2.4), ggExtra(v.0.10.0), ggforce(v.0.4.1), factoextra(v.1.0.7), kableExtra(v.1.3.4), ggbrace(v.0.1.0), ggsignif(v.0.6.3), muStat(v.1.7.0), fmsb(v.0.7.1), conover.test(v.1.1.5), rstatix(v.0.7.0), psych(v.2.1.6), ggfortify(v.0.4.14), readxl(v.1.4.2), reshape2(v.1.4.4), plyr(v.1.8.7), janitor(v.2.1.0), lubridate(v.1.9.2), forcats(v.1.0.0), stringr(v.1.5.0), dplyr(v.1.1.1), purrr(v.1.0.1), readr(v.2.1.4), tidyr(v.1.3.0), tibble(v.3.2.1), ggplot2(v.3.4.2), tidyverse(v.2.0.0), dataverse(v.0.3.10) and pander(v.0.6.5)

loaded via a namespace (and not attached): colorspace(v.2.0-3), ellipsis(v.0.3.2), rio(v.0.5.27), snakecase(v.0.11.0), rstudioapi(v.0.14), farver(v.2.1.1), ggrepel(v.0.9.1), fansi(v.1.0.3), xml2(v.1.3.4), mnormt(v.2.0.2), knitr(v.1.39), polyclip(v.1.10-0), jsonlite(v.1.8.4), broom(v.1.0.4), shiny(v.1.7.4), compiler(v.4.1.1), httr(v.1.4.5), backports(v.1.4.1), assertthat(v.0.2.1), fastmap(v.1.1.0), cli(v.3.6.1), later(v.1.3.0), tweenr(v.1.0.2), htmltools(v.0.5.5), tools(v.4.1.1), gtable(v.0.3.0), glue(v.1.6.2), Rcpp(v.1.0.9), carData(v.3.0-4), cellranger(v.1.1.0), vctrs(v.0.6.3), svglite(v.2.1.0), nlme(v.3.1-152), xfun(v.0.31), openxlsx(v.4.2.4), rvest(v.1.0.3), timechange(v.0.2.0), mime(v.0.12), miniUI(v.0.1.1.1), lifecycle(v.1.0.3), gtools(v.3.9.2), MASS(v.7.3-54), scales(v.1.2.0), hms(v.1.1.3), promises(v.1.2.0.1), parallel(v.4.1.1), yaml(v.2.3.5), curl(v.4.3.2), gridExtra(v.2.3), stringi(v.1.7.8), permute(v.0.9-7), zip(v.2.2.0), rlang(v.1.1.1), pkgconfig(v.2.0.3), systemfonts(v.1.0.4), evaluate(v.0.15), lattice(v.0.20-44), tidyselect(v.1.2.0), magrittr(v.2.0.3), R6(v.2.5.1), generics(v.0.1.2), DBI(v.1.1.1), pillar(v.1.9.0), haven(v.2.5.2), foreign(v.0.8-81), withr(v.2.5.0), abind(v.1.4-5), car(v.3.0-11), utf8(v.1.2.2), tmvnsim(v.1.0-2), tzdb(v.0.3.0), rmarkdown(v.2.14), grid(v.4.1.1), data.table(v.1.14.8), digest(v.0.6.29), webshot(v.0.5.3), xtable(v.1.8-4), httpuv(v.1.6.5), munsell(v.0.5.0) and viridisLite(v.0.4.0)

Data Loading and Preparation

The survey data was collected via a Matlab GUI. The survey and demographic data are stored in a public data repository at https://doi.org/10.21979/N9/9AZ21T.

Load supplementary data for analysis

  1. SATP zsm Stage 1: https://doi.org/10.21979/N9/0NE37R
  2. ARAUS dataset: https://doi.org/10.21979/N9/9OTEVX

SATP zsm Stage 1 & 2 dataverse datasets

#Dataverse dataset doi links
data.satp.zsm2.name = "10.21979/N9/9AZ21T" #dataset linked to this paper
data.satp.zsm1.name = "10.21979/N9/0NE37R" #satp stage 1 dataset
data.araus.name = "10.21979/N9/9OTEVX" #araus dataset

# Loading SATP Stage 2 dataset
## Define a list of data frame names and associated dataset file names
data.names <- data.frame(
        df.name=c("data.subj.zsm2", "data.demo.zsm2", #zsm2
                  "data.main.zsm1","data.der.zsm1" #zsm1
                  ),
        filename=c("SATP_Stage2_zsm_questionnaire.tab",#zsm2 demographic
                   "SATP_Stage2_zsm_demographics.tab", #zsm2 demographic
                   "SATP_Stage1_zsm_main.tab", #zsm1 main-axis attributes
                  "SATP_Stage1_zsm_derived.tab" #zsm1 derived-axis attributes
                  ))

## Load datasets into a list
data.satp.zsm2.l <- datavLoader(data.names[1:2,], data.satp.zsm2.name)
[1] "Loading: data.subj.zsm2; From: 10.21979/N9/9AZ21T"
[1] "Loading: data.demo.zsm2; From: 10.21979/N9/9AZ21T"
# Loading SATP Stage 1 dataset
data.satp.zsm1.l <- datavLoader(data.names[3:4,], data.satp.zsm1.name)
[1] "Loading: data.main.zsm1; From: 10.21979/N9/0NE37R"
[1] "Loading: data.der.zsm1; From: 10.21979/N9/0NE37R"

ARAUS Dataset

data.araus.filename <- "data.zip" #filename of araus data

#download data.zip
data.araus.bin<-dataverse::get_file_by_name(filename = data.araus.filename,
                            dataset = data.araus.name)
#write the binary file to zip
writeBin(data.araus.bin, paste0("./data/",data.araus.filename))

#unzip and retrieve only responses.csv and participants.csv
unzip(data.araus.filename, 
      files=c("data/responses.csv","data/participants.csv"))
Warning in unzip(data.araus.filename, files = c("data/responses.csv",
"data/participants.csv")): error 1 in extracting from zip file

ARAUS: cleaning and preparation

#araus participant data
data.araus.participant <- read_csv("./data/participants.csv") %>%
        dplyr::filter(ethnic==2 & residence_length==1) %>% #ethnic malays
        dplyr::select(participant)

#subjective test data
data.araus<-read_csv("./data/responses.csv") %>%
        #only local resident + ethnic malays
        dplyr::filter(participant %in% data.araus.participant$participant) %>%
        #only soundscapes; no augmentation
        dplyr::filter(grepl("silence",masker)) %>%
        #remove test and calibration folds
        dplyr::filter(!fold_r %in% c(0,-1)) %>%
        #compute ISOPL and ISOEV
        dplyr::mutate(ISOPL=((pleasant-annoying)+
                              cospi(0.25)*(calm-chaotic)+
                              cospi(0.25)*(vibrant-monotonous))/
                       (4+sqrt(32))) %>%
        dplyr::mutate(ISOEV=((eventful-uneventful)+
                              cospi(0.25)*(chaotic-calm)+
                              cospi(0.25)*(vibrant-monotonous))/
                       (4+sqrt(32))) %>%
        #select only relevant columns
        dplyr::select(c(participant,soundscape,
                        eventful,vibrant,pleasant,calm,
                        uneventful, monotonous, annoying, chaotic,
                        ISOPL, ISOEV))

Demographic Analysis

#no of participants
n.participsnts.SG <- length(
        unique(data.satp.zsm2.l$data.subj.zsm2 %>%
                       dplyr::filter(ETHNICITY=="SG") %>%
                       .$participantID))
n.participsnts.MY.M <- length(
        unique(data.satp.zsm2.l$data.subj.zsm2 %>%
                       dplyr::filter(ETHNICITY=="MY:M") %>%
                       .$participantID))
n.participsnts.MY.O <- length(
        unique(data.satp.zsm2.l$data.subj.zsm2 %>%
                       dplyr::filter(ETHNICITY=="MY:O") %>%
                       .$participantID))

#summarise language fluency count by groups
data.demo.merged.gender.fluency <- data.satp.zsm2.l$data.demo.zsm2 %>%
        dplyr::mutate(fluency=ifelse(
                set=="UPM", #fluent in oral zsm >6
                ifelse(as.numeric(as.character(fluency))>6,"Yes","No"),
                "Yes")) %>%
                group_by(group,fluency) %>%
                dplyr::summarise(count=n()) %>%
                pivot_wider(names_from = group,values_from = c(count)) %>%
                column_to_rownames(var = "fluency") %>%
                mutate_all(~replace(., is.na(.), 0)) %>%
        rbind(data.satp.zsm2.l$data.demo.zsm2 %>%
        group_by(group,gender) %>%
        dplyr::summarise(count=n()) %>%
        pivot_wider(names_from = group,values_from = c(count)) %>%
        column_to_rownames(var = "gender"))
Warning: There was 1 warning in `dplyr::mutate()`.
â„ą In argument: `fluency = ifelse(...)`.
Caused by warning in `ifelse()`:
! NAs introduced by coercion
#demos stats for age, written & spoken fluency scores
data.demo.merged.numeric <- data.satp.zsm2.l$data.demo.zsm2 %>% 
        dplyr::mutate(fluency=ifelse(
                fluency=="Yes",NA,as.numeric(as.character(fluency)))) %>%
        dplyr::group_by(group) %>%
        dplyr::summarise(across(c("age","written","fluency"),
                                list(mean=mean,sd=sd))) %>%
        dplyr::mutate(Age=paste0(format(round(age_mean,2),nsmall=2),
                                 " (",
                                 format(round(age_sd,2),nsmall=2),") "),
                      `Written Fluency`=paste0(
                              format(round(written_mean,2),nsmall=2),
                              " (",
                              format(round(written_sd,2),nsmall=2),
                              ") "),
                      `Spoken Fluency`=paste0(
                              format(round(fluency_mean,2),nsmall=2),
                              " (",
                              format(round(fluency_sd,2),nsmall=2),
                              ") "),
                      `Spoken Fluency`=ifelse(
                              group=="SG","",`Spoken Fluency`)) %>%
        dplyr::select(!c(age_mean,age_sd,written_mean,written_sd,
                         fluency_mean,fluency_sd))
Warning: There was 1 warning in `dplyr::mutate()`.
â„ą In argument: `fluency = ifelse(fluency == "Yes", NA,
  as.numeric(as.character(fluency)))`.
Caused by warning in `ifelse()`:
! NAs introduced by coercion
#summarise in a table
data.demo.merged.table<- as.data.frame(t(data.demo.merged.numeric))  %>%
        row_to_names(row_number = 1) %>% #convert 1st row to colname
        `rownames<-`(c("Age","Written Fluency","Summary")) %>%
        #update `Spoken Fluency` for grouped rows
        dplyr::mutate(SG=ifelse(SG=="","-",SG)) %>%
        rbind(data.demo.merged.gender.fluency) %>%
        kableExtra::kbl(booktabs = T, linesep = "",
                        #format = "latex",
                        format = "html",
                        label = "demo",
                        caption = "Summary of demographic information")%>%
        pack_rows("Spoken Fluency", 3, 5) %>%
        pack_rows("Gender", 6, 7) %>%
        row_spec(3, hline_after = T) %>%
        #kable_styling(latex_table_env = "tabularx") %>%
        kable_styling(protect_latex = TRUE) %>%
        kable_paper(full_width = T) #%>%
        #save_kable(paste0(getwd(),"/Table tex files/demo.tex"))
data.demo.merged.table
MY:M MY:O SG
Age 24.00 (4.87) 23.09 (2.64) 25.91 (7.18)
Written Fluency 8.74 (1.26) 6.38 (1.56) 8.06 (1.58)
Spoken Fluency
Summary 9.48 (0.72) 6.16 (1.53) -
Yes 31 17 32
No 0 15 0
Gender
Female 15 16 16
Male 16 16 16

Summary of demographic information

Exploratory analysis

Summary statistics

#summary of median values
data.merged.median<-data.satp.zsm2.l$data.subj.zsm2 %>%
        dplyr::group_by(stimuliID,set) %>%
        dplyr::summarise(across(pleasant:monotonous,
                         median,na.rm=TRUE)) %>%
        pivot_longer(cols=-c(1:2),names_to = "PAQ",values_to = "median")
Warning: There was 1 warning in `dplyr::summarise()`.
â„ą In argument: `across(pleasant:monotonous, median, na.rm = TRUE)`.
â„ą In group 1: `stimuliID = 1`, `set = "NTU"`.
Caused by warning:
! The `...` argument of `across()` is deprecated as of dplyr 1.1.0.
Supply arguments directly to `.fns` through an anonymous function instead.

  # Previously
  across(a:b, mean, na.rm = TRUE)

  # Now
  across(a:b, \(x) mean(x, na.rm = TRUE))
#pivot to long table
data.merged.long<-data.satp.zsm2.l$data.subj.zsm2 %>%
        pivot_longer(names_to = "PAQ",
                     values_to = "Score",
                     cols = c("pleasant":"monotonous"))

#ISOPL and ISOEV
data.ISOPLEV.median <- data.satp.zsm2.l$data.subj.zsm2 %>%
        group_by(stimuliID,ETHNICITY) %>%
        dplyr::summarise(across(c(ISOPL,ISOEV),
                         median,na.rm=TRUE))

#Median contour plot with median points of ISOPL and ISOEV
p.ISOPLEV.contour.facetedStimuli<-ggplot(data=data.satp.zsm2.l$data.subj.zsm2,
                                         aes(x = ISOPL, y = ISOEV)) +
        facet_wrap(~stimuliID, ncol = 9) +
        # stat_density_2d(bins=3,contour_var = "ndensity",breaks=c(0.5),
        #                 aes(color=ETHNICITY)) +
        stat_density_2d(bins=3,contour_var = "ndensity",breaks=c(0.5),
                        geom = "density_2d",
                        aes(color=ETHNICITY)) +
        geom_point(data = data.ISOPLEV.median, 
                    aes(x = ISOPL, y = ISOEV, color=ETHNICITY)) +
        ylim(c(-1,1)) + xlim(c(-1,1)) +
        ggthemes::scale_colour_few() +
        ylim(c(-1.1,1.1)) + xlim(c(-1.1,1.1))
p.ISOPLEV.contour.facetedStimuli

#KDE contour of all points 
p.ISOPLEV.contour.all<-ggplot(data=data.satp.zsm2.l$data.subj.zsm2,
                              aes(x = ISOPL, y = ISOEV)) +
        #facet_wrap(~stimuliID, ncol = 9) +
        stat_density_2d(data=data.satp.zsm2.l$data.subj.zsm2,
                        geom = "density_2d",
                        alpha=0.7,
                        contour_var = "ndensity",
                        breaks=c(0.2),
                        aes(color=ETHNICITY,
                            fill=ETHNICITY,
                            alpha = stat(level))) +
        stat_density_2d(data=data.araus,
                geom = "density_2d",
                alpha=0.5,
                n=100,
                contour_var = "ndensity",
                breaks=c(0.2),
                contour = TRUE, 
                color="#F17CB0",
                linetype = "dashed") +
        #geom_path(aes(x, y), data=contour_95) +
        geom_point(data = data.ISOPLEV.median, alpha=0.3,
                    aes(x = ISOPL, y = ISOEV, color=ETHNICITY)) +
        # geom_circle(aes(x0 = 0, y0 = 0, r = 1),
        #             fill = NA, color = "grey",
        #             linetype = "twodash") +  # Add circles
        #scale_colour_brewer(palette = "Set1") +
        ggthemes::scale_colour_few() +
        ylim(c(-1.2,1.2)) + xlim(c(-1.2,1.2)) +
        theme(legend.position="bottom")
Warning in stat_density_2d(data = data.satp.zsm2.l$data.subj.zsm2, geom =
"density_2d", : Ignoring unknown aesthetics: fill
        #theme(legend.position="none")

p.ISOPLEV.contour.all.marg<-ggMarginal(p.ISOPLEV.contour.all,
                                       groupColour = T,
                                       groupFill = T,
                                       alpha=0.15)
Warning: `stat(level)` was deprecated in ggplot2 3.4.0.
â„ą Please use `after_stat(level)` instead.
p.ISOPLEV.contour.all.marg

ggsave(paste0("./outputs/allcontour.pdf"),
       plot = p.ISOPLEV.contour.all.marg, 
       width = 2300, height = 2350, units = "px",scale = 0.7)

Statistical Analysis

Order effects analysis

Due to a bug in the MATLAB GUI program, the same randomized participant order was presented to the participants whenever the MATLAB GUI program was restarted. Here, the NTU set is evaluated for order effects since some of the participants had the same randomized order but some were truly randomized.

#extract stimuli order from NTU group
NTUorder.df <- data.satp.zsm2.l$data.subj.zsm2 %>% 
        filter(set=="NTU") %>%
        dplyr::select(participantID,stimuliID) %>%
        pivot_wider(names_from = participantID, values_from = stimuliID)
Warning: Values from `stimuliID` are not uniquely identified; output will contain
list-cols.
• Use `values_fn = list` to suppress this warning.
• Use `values_fn = {summary_fun}` to summarise duplicates.
• Use the following dplyr code to identify duplicates.
  {data} %>%
  dplyr::group_by(participantID) %>%
  dplyr::summarise(n = dplyr::n(), .groups = "drop") %>%
  dplyr::filter(n > 1L)
# Create a reference column (assuming it is the first column)
reference_column <- NTUorder.df$"8"[[1]]

# Initialize a list to store equivalent columns
equivalent_columns <- list()

# Loop through each column starting from the second column
for (i in 1:ncol(NTUorder.df)) {
  # Compare each column to the reference column
  if (all(reference_column == NTUorder.df[1, i][[1]][[1]])) {
          equivalent_columns[[
                  length(equivalent_columns) + 1
                  ]] <- as.numeric(colnames(NTUorder.df[1, i]))
  }
}

# Extract the equivalent columns from the dataframe
same.order.pid <- unlist(equivalent_columns)

# Print the equivalent columns
cat("Participant IDs with the same order:\n")
Participant IDs with the same order:
print(same.order.pid)
 [1]  8 21 23 24 25 26 28 31 32 34
#create new column to store 
ks.order.df <- data.merged.long %>%
        dplyr::filter(set=="NTU") %>%
        dplyr::mutate(group=ifelse(
                participantID %in% same.order.pid, "same", "random"),
                across(c(stimuliID,PAQ),.fns = as.factor)) %>%
        dplyr::group_by(PAQ,stimuliID) %>%
        dplyr::summarize(
                ks_test = list(ks.test(Score[group == "same"],
                                       Score[group == "random"],
                                       exact = NULL,
                                       alternative = "two.sided")),
                stat = ks_test[[1]]$statistic,
                ks.pvalue = ks_test[[1]]$p.value,
                ks.signif = ks.pvalue<0.05,
                n.same = length(Score[group == "same"]),
                n.rand = length(Score[group == "random"])) %>%
        dplyr::ungroup() %>%
        dplyr::mutate(ks.padj = p.adjust(ks.pvalue, method="BH"),
                      ks.adjsignif = ks.padj<0.05) %>%
        dplyr::select(!ks_test)
Warning: There were 216 warnings in `dplyr::summarize()`.
The first warning was:
â„ą In argument: `ks_test = list(...)`.
â„ą In group 1: `PAQ = annoying`, `stimuliID = 1`.
Caused by warning in `ks.test()`:
! cannot compute exact p-value with ties
â„ą Run `dplyr::last_dplyr_warnings()` to see the 215 remaining warnings.
cat("Number of KS comparisons p <0.05: ", 
    sum(ks.order.df$ks.signif),"/",
    length(ks.order.df$ks.signif), "\n")
Number of KS comparisons p <0.05:  10 / 216 
cat("Number of KS comparisons with p.adj <0.05: ", 
    sum(ks.order.df$ks.adjsignif),"/",
    length(ks.order.df$ks.adjsignif))
Number of KS comparisons with p.adj <0.05:  0 / 216

Hence, there were no order effects present.

Difference in PAQ scores across groups

Kruskal-Wallis Test

#initialise data frame
data.kwt<-data.frame(stimuliID=numeric(),
                     PAQ=character(),
                     pvalue=numeric(),
                     effect=numeric())

list.PAQ<-c("eventful","vibrant","pleasant","calm",
            "uneventful","monotonous","annoying","chaotic",
            "ISOPL","ISOEV")

#for each stimuli
for(s.ID in 1:length(unique(data.satp.zsm2.l$data.subj.zsm2$stimuliID))){
        #for each PAQ attribute
        for (paq in list.PAQ){
                df=data.satp.zsm2.l$data.subj.zsm2 %>%
                        dplyr::filter(stimuliID==s.ID)
                kwt<-kruskal.test(
                        as.formula(paste(paq,"~ETHNICITY")),
                        data=df)
                kwteff<-kruskal_effsize(
                        formula = as.formula(paste(paq,"~ETHNICITY")),
                        data=df)
                data.kwt<-rbind(
                        data.kwt, 
                        c(stimuliID=s.ID,
                          PAQ=paq,
                          pvalue=kwt$p.value,
                          effect=kwteff$effsize))
        }
}
colnames(data.kwt)<-c("stimuliID","PAQ","pvalue","effect")

#cases with significant differences
data.kwt.sig<-data.kwt %>%
        dplyr::filter(as.numeric(pvalue)<0.05 & as.numeric(effect)>=0.01)

#export to csv
write.csv(x=data.kwt.sig,
          file = "./outputs/SATP_Stage2_zsm_sigKWT.csv",
          row.names = FALSE)

Posthoc Conover-Iman Tests

#initialise data frame
data.cit<-data.frame(stimuliID=numeric(),
                     PAQ=character(),
                     stat=numeric(),
                     set=character(),
                     pvalue=numeric(),
                     adjpval=numeric())

#Perform CIT for significant cases in KWT
for(idx in 1:length(data.kwt.sig$stimuliID)){
        paq<-data.kwt.sig$PAQ[idx]
        x.ID<-data.kwt.sig$stimuliID[idx]
        #select only kwt significant
        df<-data.satp.zsm2.l$data.subj.zsm2 %>% 
                dplyr::filter(stimuliID==x.ID) 
        cit<-conover.test(x=df[,paq],
                          g=df$ETHNICITY,
                          kw=FALSE,
                          method='bonferroni',
                          altp=TRUE)
        data.cit<-rbind(
                data.cit,
                cbind(data.frame(stimuliID=x.ID,PAQ=paq),
                      as.data.frame(cit) %>%
                              dplyr::select(c("T",comparisons,
                                              altP,altP.adjusted))))
}
                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.096353
         |     0.1164
         |
      SG |  -0.579087  -2.696931
         |     1.0000    0.0250*

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.368721
         |     0.0598
         |
      SG |   0.074384  -2.312765
         |     1.0000     0.0689

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.551105
         |    0.0372*
         |
      SG |  -1.288147  -3.870090
         |     0.6028    0.0006*

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   1.374395
         |     0.5180
         |
      SG |  -2.042446  -3.444287
         |     0.1319    0.0026*

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -1.110177
         |     0.8094
         |
      SG |  -3.359556  -2.267446
         |    0.0034*     0.0771

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -2.665952
         |    0.0272*
         |
      SG |  -1.518144   1.157028
         |     0.3972     0.7508

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   3.487605
         |    0.0022*
         |
      SG |   0.589962  -2.920917
         |     1.0000    0.0132*

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.364866
         |     0.0604
         |
      SG |   2.650871   0.288301
         |    0.0284*     1.0000

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.835132
         |    0.0169*
         |
      SG |   2.168377  -0.672110
         |     0.0981     1.0000

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.815394
         |    0.0179*
         |
      SG |   1.404042  -1.422688
         |     0.4910     0.4746

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.575278
         |    0.0348*
         |
      SG |   1.987977  -0.592018
         |     0.1494     1.0000

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.370473
         |     0.0596
         |
      SG |   0.488495  -1.897094
         |     1.0000     0.1829

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.767914
         |    0.0205*
         |
      SG |   1.454815  -1.323646
         |     0.4474     0.5667

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -1.577765
         |     0.3542
         |
      SG |  -2.685625  -1.116758
         |    0.0258*     0.8010

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   1.941617
         |     0.1657
         |
      SG |   4.846866   2.928584
         |    0.0000*    0.0129*

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.082022
         |     0.1204
         |
      SG |   4.894541   2.835110
         |    0.0000*    0.0169*

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -1.821498
         |     0.2153
         |
      SG |  -3.319877  -1.510414
         |    0.0039*     0.4031

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -0.382097
         |     1.0000
         |
      SG |  -4.526339  -4.177529
         |    0.0001*    0.0002*

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -2.412048
         |     0.0535
         |
      SG |  -4.283832  -1.886818
         |    0.0001*     0.1870

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -1.556009
         |     0.3694
         |
      SG |  -2.952641  -1.407850
         |    0.0120*     0.4876

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   1.505121
         |     0.4072
         |
      SG |   5.127671   3.651647
         |    0.0000*    0.0013*

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -3.054735
         |    0.0088*
         |
      SG |  -3.135534  -0.081448
         |    0.0069*     1.0000

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -3.240922
         |    0.0050*
         |
      SG |  -3.355987  -0.115989
         |    0.0035*     1.0000

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -0.257033
         |     1.0000
         |
      SG |   3.529800   3.817250
         |    0.0020*    0.0007*

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   0.075390
         |     1.0000
         |
      SG |   3.621164   3.574254
         |    0.0014*    0.0017*

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.720999
         |    0.0234*
         |
      SG |   0.680343  -2.057046
         |     1.0000     0.1275

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   0.343194
         |     1.0000
         |
      SG |  -3.007546  -3.377654
         |    0.0102*    0.0032*

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -0.247375
         |     1.0000
         |
      SG |  -2.617850  -2.389515
         |    0.0310*     0.0567

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -1.110394
         |     0.8092
         |
      SG |  -3.875555  -2.787371
         |    0.0006*    0.0194*

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -0.994770
         |     0.9674
         |
      SG |   2.955386   3.981885
         |    0.0119*    0.0004*

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -3.757375
         |    0.0009*
         |
      SG |  -3.806249  -0.049266
         |    0.0008*     1.0000

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   1.484189
         |     0.4235
         |
      SG |  -1.355782  -2.862782
         |     0.5355    0.0156*

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   3.087326
         |    0.0080*
         |
      SG |   2.173749  -0.920914
         |     0.0969     1.0000

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.900857
         |    0.0140*
         |
      SG |   1.053426  -1.862270
         |     0.8847     0.1973

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -1.218424
         |     0.6785
         |
      SG |  -2.831497  -1.626029
         |    0.0171*     0.3221

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   3.763649
         |    0.0009*
         |
      SG |   3.977643   0.215712
         |    0.0004*     1.0000

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -0.588748
         |     1.0000
         |
      SG |  -3.000999  -2.431627
         |    0.0104*     0.0509

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -0.672797
         |     1.0000
         |
      SG |  -2.440599  -1.782001
         |    0.0497*     0.2341

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   3.404160
         |    0.0030*
         |
      SG |   2.144413  -1.269865
         |     0.1039     0.6220

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.664143
         |    0.0273*
         |
      SG |   2.877581   0.215151
         |    0.0149*     1.0000

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -1.285967
         |     0.6050
         |
      SG |  -2.607179  -1.331823
         |    0.0320*     0.5586

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   1.128625
         |     0.7860
         |
      SG |  -2.269567  -3.425487
         |     0.0767    0.0028*

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -1.945972
         |     0.1641
         |
      SG |  -3.230487  -1.294832
         |    0.0051*     0.5959

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.237080
         |     0.0831
         |
      SG |  -0.307322  -2.564839
         |     1.0000    0.0358*

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.543273
         |    0.0380*
         |
      SG |  -0.367376  -2.934030
         |     1.0000    0.0127*

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -0.232436
         |     1.0000
         |
      SG |  -2.625746  -2.412534
         |    0.0304*     0.0535

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -1.774008
         |     0.2381
         |
      SG |  -3.796499  -2.038736
         |    0.0008*     0.1330

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   1.093543
         |     0.8310
         |
      SG |   2.959157   1.880598
         |    0.0118*     0.1896

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   3.342066
         |    0.0036*
         |
      SG |   1.028624  -2.332024
         |     0.9191     0.0656

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -2.548568
         |    0.0374*
         |
      SG |  -0.863477   1.698625
         |     1.0000     0.2783

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.691147
         |    0.0254*
         |
      SG |   1.518143  -1.182426
         |     0.3972     0.7203

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.753876
         |    0.0213*
         |
      SG |   2.224770  -0.533355
         |     0.0856     1.0000

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.402845
         |     0.0548
         |
      SG |   0.434670  -1.983983
         |     1.0000     0.1507

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.702042
         |    0.0246*
         |
      SG |   1.096947  -1.617988
         |     0.8266     0.3273

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.583714
         |    0.0340*
         |
      SG |   2.116694  -0.470771
         |     0.1110     1.0000

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -0.191336
         |     1.0000
         |
      SG |  -2.678335  -2.506975
         |    0.0263*    0.0418*

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.814280
         |    0.0179*
         |
      SG |   2.510167  -0.306555
         |    0.0414*     1.0000

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   2.794392
         |    0.0190*
         |
      SG |   3.103754   0.311847
         |    0.0076*     1.0000

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   1.729741
         |     0.2611
         |
      SG |  -0.886247  -2.637001
         |     1.0000    0.0295*

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |   0.382518
         |     1.0000
         |
      SG |  -2.122087  -2.524722
         |     0.1096    0.0399*

alpha = 0.05
Reject Ho if p <= alpha

                           Comparison of x by group                            
                                 (Bonferroni)                                  
Col Mean-|
Row Mean |       MY:M       MY:O
---------+----------------------
    MY:O |  -2.981636
         |    0.0110*
         |
      SG |  -2.928068   0.053997
         |    0.0129*     1.0000

alpha = 0.05
Reject Ho if p <= alpha
#export significant cases
data.cit.sig<-data.cit %>%
        filter(as.numeric(altP.adjusted)<0.05) %>%
        dplyr::mutate(altP.adjusted=round(altP.adjusted,digits = 4))

write.csv(x=data.cit.sig,
          file = "./outputs/SATP_Stage2_zsm_sigCIT.csv",
          row.names = FALSE)

Table of KWT and CIT results

#kruskal-wallis table of p-vales and effect sizes
kwtTable<-data.kwt %>% 
        pivot_longer(cols = c("pvalue","effect"),
                     names_to = "Stat",values_to = "Value") %>%
        dplyr::mutate(Value=round(as.numeric(Value),4),
                      Value=case_when(Stat=="pvalue" & Value<0.0001~
                                paste0("****",formatC(Value,
                                                      format="f",
                                                      digits=4)),
                        Stat=="pvalue" & Value<0.001~
                                paste0("***",formatC(Value,
                                                     format="f",
                                                     digits=4)),
                        Stat=="pvalue" & Value<0.01~
                                paste0("**",formatC(Value,
                                                    format="f",
                                                    digits=4)),
                        Stat=="pvalue" & Value<0.05~
                                paste0("*",formatC(Value,
                                                   format="f",
                                                   digits=4)),
                        Stat=="effect" & abs(Value)>=0.01 & Value<0.06~
                                paste0("(S)",formatC(Value,
                                                     format="f",
                                                     digits=4)),
                        Stat=="effect" & abs(Value)>=0.06 & Value<0.14~
                                paste0("(M)",formatC(Value,
                                                     format="f",
                                                     digits=4)),
                        Stat=="effect" & abs(Value)>=0.14~
                                paste0("(L)",formatC(Value,
                                                     format="f",
                                                     digits=4)),
                        TRUE~formatC(Value,format="f",digits=4))) %>%
        pivot_wider(names_from = "PAQ", values_from = "Value") %>%
        kableExtra::kbl(booktabs = T, linesep = "",
                        #format = "latex",
                        format = "html",
                        label = "kwt",
                        caption = "Summary of Kruskal-Wallis Test")%>%
        collapse_rows(columns = 1, valign = "top") %>%
        #kable_styling(latex_table_env = "tabularx") %>%
        kable_styling(protect_latex = TRUE) %>%
        kable_paper(full_width = T) #%>%
        #save_kable(paste0(getwd(),"/Table tex files/kwtTable.tex"))
kwtTable
stimuliID Stat eventful vibrant pleasant calm uneventful monotonous annoying chaotic ISOPL ISOEV
1 pvalue 0.8922 0.6866 0.0848 *0.0229 0.8497 0.3356 0.8912 0.9657 0.5464 0.2345
1 effect (S)-0.0193 (S)-0.0136 (S)0.0319 (M)0.0603 (S)-0.0182 0.0020 (S)-0.0192 (S)-0.0210 -0.0086 0.0098
2 pvalue 0.7010 0.5245 0.6466 0.9061 *0.0312 0.4859 0.5070 0.1692 0.1697 0.2938
2 effect (S)-0.0140 -0.0077 (S)-0.0123 (S)-0.0196 (S)0.0536 -0.0060 -0.0070 (S)0.0169 (S)0.0168 0.0049
3 pvalue 0.7158 0.7277 **0.0011 **0.0044 0.6767 **0.0048 *0.0338 0.0966 **0.0020 0.1467
3 effect (S)-0.0145 (S)-0.0148 (M)0.1256 (M)0.0963 (S)-0.0132 (M)0.0941 (S)0.0519 (S)0.0291 (M)0.1136 (S)0.0200
4 pvalue *0.0194 *0.0169 0.8589 0.9519 0.3967 0.3482 0.1311 *0.0240 0.4322 *0.0322
4 effect (M)0.0640 (M)0.0670 (S)-0.0184 (S)-0.0207 -0.0016 0.0012 (S)0.0224 (S)0.0593 -0.0035 (S)0.0529
5 pvalue 0.2984 0.5899 0.1018 *0.0490 0.2225 0.5330 0.2140 0.0860 *0.0269 0.3958
5 effect 0.0045 (S)-0.0103 (S)0.0279 (S)0.0438 (S)0.0109 -0.0081 (S)0.0118 (S)0.0316 (S)0.0568 -0.0016
6 pvalue 0.7964 *0.0319 ***0.0001 ***0.0001 **0.0065 ****0.0000 ***0.0004 *0.0171 ****0.0000 0.7393
6 effect (S)-0.0168 (S)0.0531 (L)0.1887 (L)0.1909 (M)0.0878 (L)0.1996 (L)0.1488 (M)0.0667 (L)0.2162 (S)-0.0152
7 pvalue **0.0033 **0.0017 ***0.0004 ***0.0006 *0.0226 **0.0022 *0.0193 ***0.0009 ***0.0006 ***0.0003
7 effect (M)0.1023 (M)0.1169 (L)0.1464 (L)0.1400 (M)0.0606 (M)0.1112 (M)0.0640 (M)0.1297 (M)0.1386 (L)0.1529
8 pvalue 0.0795 0.0670 0.9389 0.1881 *0.0213 0.9626 0.6044 0.7504 0.8042 0.2756
8 effect (S)0.0333 (S)0.0370 (S)-0.0204 (S)0.0146 (M)0.0619 (S)-0.0209 (S)-0.0108 (S)-0.0155 (S)-0.0170 0.0063
9 pvalue 0.3322 0.8398 0.4943 0.4986 0.6499 0.5985 0.1561 0.3011 0.5723 0.7917
9 effect 0.0022 (S)-0.0179 -0.0064 -0.0066 (S)-0.0124 (S)-0.0106 (S)0.0186 0.0044 -0.0096 (S)-0.0167
10 pvalue 0.1339 **0.0099 0.9309 0.2726 0.1489 0.5283 0.0799 *0.0176 0.7436 0.1012
10 effect (S)0.0220 (M)0.0787 (S)-0.0202 0.0065 (S)0.0197 -0.0079 (S)0.0332 (M)0.0661 (S)-0.0153 (S)0.0281
11 pvalue 0.3501 0.0957 0.7691 0.5523 0.5499 0.8921 *0.0225 0.6610 0.1256 0.1562
11 effect 0.0011 (S)0.0293 (S)-0.0160 -0.0088 -0.0087 (S)-0.0193 (M)0.0608 (S)-0.0127 (S)0.0234 (S)0.0186
12 pvalue 0.1490 ***0.0002 **0.0092 *0.0473 0.2027 0.4829 0.2888 **0.0047 0.5712 **0.0091
12 effect (S)0.0196 (L)0.1601 (M)0.0801 (S)0.0446 (S)0.0130 -0.0059 0.0053 (M)0.0946 -0.0096 (M)0.0805
13 pvalue 0.5336 0.4740 0.1234 0.1761 0.5949 0.9105 0.1603 0.3326 0.2151 0.3677
13 effect -0.0081 -0.0055 (S)0.0238 (S)0.0160 (S)-0.0105 (S)-0.0197 (S)0.0181 0.0022 (S)0.0117 0.0000
14 pvalue 0.1339 *0.0394 0.7714 0.4814 0.5111 0.9514 0.8511 0.8423 0.3714 0.6545
14 effect (S)0.0220 (S)0.0486 (S)-0.0161 -0.0058 -0.0071 (S)-0.0207 (S)-0.0182 (S)-0.0180 -0.0002 (S)-0.0125
15 pvalue **0.0041 **0.0079 *0.0252 **0.0093 0.1363 0.1101 0.3836 0.9885 0.0886 *0.0185
15 effect (M)0.0976 (M)0.0835 (S)0.0582 (M)0.0800 (S)0.0216 (S)0.0262 -0.0009 (S)-0.0215 (S)0.0309 (M)0.0649
16 pvalue 0.0611 0.1087 0.1161 **0.0017 0.1949 0.5456 0.8784 *0.0153 0.4645 0.1364
16 effect (S)0.0390 (S)0.0265 (S)0.0251 (M)0.1169 (S)0.0138 -0.0086 (S)-0.0189 (M)0.0691 -0.0051 (S)0.0216
17 pvalue 0.1856 **0.0048 0.9455 0.4601 0.2426 0.7042 0.1792 0.1366 0.7813 0.8305
17 effect (S)0.0149 (M)0.0942 (S)-0.0205 -0.0049 0.0091 (S)-0.0141 (S)0.0156 (S)0.0215 (S)-0.0164 (S)-0.0177
18 pvalue 0.7283 0.3410 0.6358 0.3277 0.2039 0.4012 0.0962 0.2346 *0.0403 0.7897
18 effect (S)-0.0148 0.0016 (S)-0.0119 0.0025 (S)0.0128 -0.0019 (S)0.0292 0.0098 (S)0.0481 (S)-0.0166
19 pvalue 0.3957 0.1317 0.3188 0.1889 0.7906 0.0512 0.8993 0.4409 0.0797 0.7631
19 effect -0.0016 (S)0.0223 0.0031 (S)0.0145 (S)-0.0166 (S)0.0429 (S)-0.0194 -0.0039 (S)0.0332 (S)-0.0159
20 pvalue *0.0320 *0.0188 0.5063 0.7328 0.1162 0.4963 *0.0429 0.4304 0.7258 *0.0302
20 effect (S)0.0531 (M)0.0647 -0.0069 (S)-0.0150 (S)0.0251 -0.0065 (S)0.0467 -0.0034 (S)-0.0148 (S)0.0544
21 pvalue 0.4372 0.2387 0.1229 0.2525 0.3195 0.2694 0.6662 0.1848 0.5034 0.3455
21 effect -0.0038 0.0094 (S)0.0238 0.0082 0.0031 0.0068 (S)-0.0129 (S)0.0150 -0.0068 0.0014
22 pvalue *0.0283 0.3071 0.7082 0.4818 0.2880 *0.0151 0.2179 *0.0123 0.4669 **0.0051
22 effect (S)0.0557 0.0039 (S)-0.0142 -0.0059 0.0053 (M)0.0694 (S)0.0114 (M)0.0738 -0.0052 (M)0.0929
23 pvalue 0.9169 0.2876 0.6474 0.1744 0.3075 0.5249 0.1535 0.2067 0.3664 0.1745
23 effect (S)-0.0199 0.0054 (S)-0.0123 (S)0.0162 0.0039 -0.0077 (S)0.0190 (S)0.0125 0.0001 (S)0.0162
24 pvalue 0.3843 0.6265 *0.0331 *0.0305 0.2755 0.6393 0.4755 0.0738 0.1511 0.1465
24 effect -0.0009 (S)-0.0116 (S)0.0523 (S)0.0541 0.0063 (S)-0.0120 -0.0056 (S)0.0349 (S)0.0193 (S)0.0200
25 pvalue 0.0529 **0.0052 0.6339 0.2347 0.9759 0.0857 0.1710 0.0545 0.1953 0.3919
25 effect (S)0.0421 (M)0.0925 (S)-0.0118 0.0098 (S)-0.0212 (S)0.0317 (S)0.0167 (S)0.0415 (S)0.0138 -0.0014
26 pvalue 0.0960 0.1459 0.9533 0.8900 0.1443 0.3838 0.9719 0.9136 0.7185 0.0536
26 effect (S)0.0292 (S)0.0201 (S)-0.0207 (S)-0.0192 (S)0.0203 -0.0009 (S)-0.0211 (S)-0.0198 (S)-0.0146 (S)0.0419
27 pvalue 0.8821 0.8291 0.7761 0.3570 0.9775 0.4754 0.6613 0.2503 0.9078 0.7823
27 effect (S)-0.0190 (S)-0.0177 (S)-0.0162 0.0006 (S)-0.0212 -0.0056 (S)-0.0127 0.0084 (S)-0.0196 (S)-0.0164

Summary of Kruskal-Wallis Test

#posthoc conover-iman table of p-vales
citTable <- data.cit %>% 
        dplyr::mutate(PAQ=factor(PAQ, level=list.PAQ),
                      comparisons=gsub(" - ","--",comparisons)) %>%
        dplyr::select(!altP) %>%
        dplyr::mutate(altP.adjusted=round(as.numeric(altP.adjusted),4),
                      altP.adjusted=case_when(altP.adjusted <0.0001~
                                paste0("****",formatC(altP.adjusted,
                                                      format="f",digits=4)),
                        altP.adjusted <0.001~
                                paste0("***",formatC(altP.adjusted,
                                                     format="f",digits=4)),
                        altP.adjusted <0.01~
                                paste0("**",formatC(altP.adjusted,
                                                    format="f",digits=4)),
                        altP.adjusted <0.05~
                                paste0("*",formatC(altP.adjusted,
                                                   format="f",digits=4)),
                        TRUE~formatC(altP.adjusted,format="f",digits=4))) %>%
        pivot_wider(values_from = altP.adjusted, names_from = comparisons) %>%
        kableExtra::kbl(booktabs = T, linesep = "",
                        #format = "latex",
                        format = "html",
                        label = "kwt",
                        caption = "Summary of Kruskal-Wallis Test")%>%
        collapse_rows(columns = 1, valign = "top") %>%
        #kable_styling(latex_table_env = "tabularx") %>%
        kable_styling(protect_latex = TRUE) %>%
        kable_paper(full_width = T) #%>%
        #save_kable(paste0(getwd(),"/Table tex files/citTable.tex"))
citTable
stimuliID PAQ T MY:M--MY:O MY:M--SG MY:O--SG
1 calm 2.0963537 0.1164 NA NA
1 calm -0.5790879 NA 1.0000 NA
1 calm -2.6969314 NA NA *0.0250
2 uneventful 2.3687211 0.0598 NA NA
2 uneventful 0.0743846 NA 1.0000 NA
2 uneventful -2.3127651 NA NA 0.0689
3 pleasant 2.5511052 *0.0372 NA NA
3 pleasant -1.2881472 NA 0.6028 NA
3 pleasant -3.8700903 NA NA ***0.0006
3 calm 1.3743958 0.5180 NA NA
3 calm -2.0424465 NA 0.1319 NA
3 calm -3.4442873 NA NA **0.0026
3 monotonous -1.1101775 0.8094 NA NA
3 monotonous -3.3595569 NA **0.0034 NA
3 monotonous -2.2674469 NA NA 0.0771
3 annoying -2.6659529 *0.0272 NA NA
3 annoying -1.5181442 NA 0.3972 NA
3 annoying 1.1570282 NA NA 0.7508
3 ISOPL 3.4876052 **0.0022 NA NA
3 ISOPL 0.5899623 NA 1.0000 NA
3 ISOPL -2.9209175 NA NA *0.0132
4 eventful 2.3648669 0.0604 NA NA
4 eventful 2.6508714 NA *0.0284 NA
4 eventful 0.2883017 NA NA 1.0000
4 vibrant 2.8351326 *0.0169 NA NA
4 vibrant 2.1683779 NA 0.0981 NA
4 vibrant -0.6721103 NA NA 1.0000
4 chaotic 2.8153945 *0.0179 NA NA
4 chaotic 1.4040423 NA 0.4910 NA
4 chaotic -1.4226885 NA NA 0.4746
4 ISOEV 2.5752788 *0.0348 NA NA
4 ISOEV 1.9879777 NA 0.1494 NA
4 ISOEV -0.5920185 NA NA 1.0000
5 calm 2.3704737 0.0596 NA NA
5 calm 0.4884955 NA 1.0000 NA
5 calm -1.8970947 NA NA 0.1829
5 ISOPL 2.7679142 *0.0205 NA NA
5 ISOPL 1.4548153 NA 0.4474 NA
5 ISOPL -1.3236461 NA NA 0.5667
6 vibrant -1.5777658 0.3542 NA NA
6 vibrant -2.6856257 NA *0.0258 NA
6 vibrant -1.1167585 NA NA 0.8010
6 pleasant 1.9416180 0.1657 NA NA
6 pleasant 4.8468669 NA ****0.0000 NA
6 pleasant 2.9285846 NA NA *0.0129
6 calm 2.0820223 0.1204 NA NA
6 calm 4.8945418 NA ****0.0000 NA
6 calm 2.8351104 NA NA *0.0169
6 uneventful -1.8214989 0.2153 NA NA
6 uneventful -3.3198778 NA **0.0039 NA
6 uneventful -1.5104142 NA NA 0.4031
6 monotonous -0.3820973 1.0000 NA NA
6 monotonous -4.5263393 NA ***0.0001 NA
6 monotonous -4.1775297 NA NA ***0.0002
6 annoying -2.4120484 0.0535 NA NA
6 annoying -4.2838327 NA ***0.0001 NA
6 annoying -1.8868190 NA NA 0.1870
6 chaotic -1.5560092 0.3694 NA NA
6 chaotic -2.9526418 NA *0.0120 NA
6 chaotic -1.4078507 NA NA 0.4876
6 ISOPL 1.5051212 0.4072 NA NA
6 ISOPL 5.1276717 NA ****0.0000 NA
6 ISOPL 3.6516478 NA NA **0.0013
7 eventful -3.0547352 **0.0088 NA NA
7 eventful -3.1355345 NA **0.0069 NA
7 eventful -0.0814483 NA NA 1.0000
7 vibrant -3.2409225 **0.0050 NA NA
7 vibrant -3.3559876 NA **0.0035 NA
7 vibrant -0.1159893 NA NA 1.0000
7 pleasant -0.2570331 1.0000 NA NA
7 pleasant 3.5298006 NA **0.0020 NA
7 pleasant 3.8172506 NA NA ***0.0007
7 calm 0.0753903 1.0000 NA NA
7 calm 3.6211641 NA **0.0014 NA
7 calm 3.5742544 NA NA **0.0017
7 uneventful 2.7209992 *0.0234 NA NA
7 uneventful 0.6803436 NA 1.0000 NA
7 uneventful -2.0570467 NA NA 0.1275
7 monotonous 0.3431942 1.0000 NA NA
7 monotonous -3.0075462 NA *0.0102 NA
7 monotonous -3.3776544 NA NA **0.0032
7 annoying -0.2473751 1.0000 NA NA
7 annoying -2.6178505 NA *0.0310 NA
7 annoying -2.3895156 NA NA 0.0567
7 chaotic -1.1103947 0.8092 NA NA
7 chaotic -3.8755554 NA ***0.0006 NA
7 chaotic -2.7873711 NA NA *0.0194
7 ISOPL -0.9947703 0.9674 NA NA
7 ISOPL 2.9553863 NA *0.0119 NA
7 ISOPL 3.9818853 NA NA ***0.0004
7 ISOEV -3.7573760 ***0.0009 NA NA
7 ISOEV -3.8062498 NA ***0.0008 NA
7 ISOEV -0.0492664 NA NA 1.0000
8 uneventful 1.4841892 0.4235 NA NA
8 uneventful -1.3557822 NA 0.5355 NA
8 uneventful -2.8627828 NA NA *0.0156
10 vibrant 3.0873265 **0.0080 NA NA
10 vibrant 2.1737500 NA 0.0969 NA
10 vibrant -0.9209146 NA NA 1.0000
10 chaotic 2.9008575 *0.0140 NA NA
10 chaotic 1.0534261 NA 0.8847 NA
10 chaotic -1.8622705 NA NA 0.1973
11 annoying -1.2184246 0.6785 NA NA
11 annoying -2.8314971 NA *0.0171 NA
11 annoying -1.6260291 NA NA 0.3221
12 vibrant 3.7636499 ***0.0009 NA NA
12 vibrant 3.9776434 NA ***0.0004 NA
12 vibrant 0.2157123 NA NA 1.0000
12 pleasant -0.5887480 1.0000 NA NA
12 pleasant -3.0009998 NA *0.0104 NA
12 pleasant -2.4316276 NA NA 0.0509
12 calm -0.6727979 1.0000 NA NA
12 calm -2.4406000 NA *0.0497 NA
12 calm -1.7820016 NA NA 0.2341
12 chaotic 3.4041608 **0.0030 NA NA
12 chaotic 2.1444135 NA 0.1039 NA
12 chaotic -1.2698659 NA NA 0.6220
12 ISOEV 2.6641439 *0.0273 NA NA
12 ISOEV 2.8775810 NA *0.0149 NA
12 ISOEV 0.2151516 NA NA 1.0000
14 vibrant -1.2859679 0.6050 NA NA
14 vibrant -2.6071791 NA *0.0320 NA
14 vibrant -1.3318235 NA NA 0.5586
15 eventful 1.1286256 0.7860 NA NA
15 eventful -2.2695672 NA 0.0767 NA
15 eventful -3.4254880 NA NA **0.0028
15 vibrant -1.9459724 0.1641 NA NA
15 vibrant -3.2304871 NA **0.0051 NA
15 vibrant -1.2948323 NA NA 0.5959
15 pleasant 2.2370803 0.0831 NA NA
15 pleasant -0.3073221 NA 1.0000 NA
15 pleasant -2.5648397 NA NA *0.0358
15 calm 2.5432740 *0.0380 NA NA
15 calm -0.3673770 NA 1.0000 NA
15 calm -2.9340301 NA NA *0.0127
15 ISOEV -0.2324360 1.0000 NA NA
15 ISOEV -2.6257468 NA *0.0304 NA
15 ISOEV -2.4125344 NA NA 0.0535
16 calm -1.7740088 0.2381 NA NA
16 calm -3.7964997 NA ***0.0008 NA
16 calm -2.0387360 NA NA 0.1330
16 chaotic 1.0935438 0.8310 NA NA
16 chaotic 2.9591577 NA *0.0118 NA
16 chaotic 1.8805990 NA NA 0.1896
17 vibrant 3.3420668 **0.0036 NA NA
17 vibrant 1.0286242 NA 0.9191 NA
17 vibrant -2.3320248 NA NA 0.0656
18 ISOPL -2.5485685 *0.0374 NA NA
18 ISOPL -0.8634779 NA 1.0000 NA
18 ISOPL 1.6986257 NA NA 0.2783
20 eventful 2.6911475 *0.0254 NA NA
20 eventful 1.5181430 NA 0.3972 NA
20 eventful -1.1824264 NA NA 0.7203
20 vibrant 2.7538764 *0.0213 NA NA
20 vibrant 2.2247706 NA 0.0856 NA
20 vibrant -0.5333557 NA NA 1.0000
20 annoying 2.4028451 0.0548 NA NA
20 annoying 0.4346705 NA 1.0000 NA
20 annoying -1.9839835 NA NA 0.1507
20 ISOEV 2.7020427 *0.0246 NA NA
20 ISOEV 1.0969471 NA 0.8266 NA
20 ISOEV -1.6179881 NA NA 0.3273
22 eventful 2.5837148 *0.0340 NA NA
22 eventful 2.1166946 NA 0.1110 NA
22 eventful -0.4707715 NA NA 1.0000
22 monotonous -0.1913366 1.0000 NA NA
22 monotonous -2.6783357 NA *0.0263 NA
22 monotonous -2.5069753 NA NA *0.0418
22 chaotic 2.8142804 *0.0179 NA NA
22 chaotic 2.5101674 NA *0.0414 NA
22 chaotic -0.3065556 NA NA 1.0000
22 ISOEV 2.7943921 *0.0190 NA NA
22 ISOEV 3.1037543 NA **0.0076 NA
22 ISOEV 0.3118471 NA NA 1.0000
24 pleasant 1.7297416 0.2611 NA NA
24 pleasant -0.8862473 NA 1.0000 NA
24 pleasant -2.6370011 NA NA *0.0295
24 calm 0.3825183 1.0000 NA NA
24 calm -2.1220870 NA 0.1096 NA
24 calm -2.5247229 NA NA *0.0399
25 vibrant -2.9816362 *0.0110 NA NA
25 vibrant -2.9280687 NA *0.0129 NA
25 vibrant 0.0539978 NA NA 1.0000

Summary of Kruskal-Wallis Test

Plotting posthoc paired comparison results

Box plot of all PAQ across all stimuli

#box plots PAQ vs stimuli
#generate pairs and signif annotations for ggsnif plotting
boxplot.xtolerance<-0.25
signifbar.height.mym.myo<-110
signifbar.height.mym.sg<-135
signifbar.height.myo.sg<-110

#prepare dataframe for plotting significance brace
PAQ.combined.signif <- data.cit.sig %>%
        dplyr::filter(!PAQ %in% c("ISOPL","ISOEV")) %>%
        dplyr::mutate(stimuliID=as.numeric(stimuliID),
                      PAQ=case_when(PAQ == "eventful"~"e",
                                        PAQ == "vibrant"~"v",
                                        PAQ == "pleasant"~"p",
                                        PAQ == "calm"~"ca",
                                        PAQ == "uneventful"~"u",
                                        PAQ == "monotonous"~"m",
                                        PAQ == "annoying"~"a",
                                        PAQ == "chaotic"~"ch"),
                      PAQ=factor(PAQ, level=c("e","v",
                                              "p","ca","u",
                                              "m","a",
                                              "ch")),
                      #factor order for x-axis location
                      #PAQfctorder=as.numeric(PAQ),
                      PAQfctorder=as.numeric(stimuliID),
                      #MY:M is left most boxplot in group; MY:O is the middle
                      #x is the left edge of the signif bar
                      x=ifelse(grepl("MY:M \\-",comparisons), 
                               PAQfctorder-boxplot.xtolerance,
                               PAQfctorder),
                      #xend is the right edge of the signif bar
                      xend=ifelse(grepl("- MY:O",comparisons),
                                  PAQfctorder,PAQfctorder+boxplot.xtolerance),
                      y=ifelse(grepl("MY:M \\-",comparisons),
                                  ifelse(grepl("- MY:O",comparisons),
                                         signifbar.height.mym.myo,
                                         signifbar.height.mym.sg),
                               signifbar.height.myo.sg),
                      #yend=y-5,
                      ann.labels=ifelse(
                              altP.adjusted<0.0001,
                              "****",
                              ifelse(altP.adjusted<0.001,
                                     "***",
                                     ifelse(altP.adjusted<0.01,
                                            "**",
                                            ifelse(altP.adjusted<0.05,
                                                   "*","ns")))),
                      stimuliID=factor(stimuliID,levels=c(1:27)))
        
#str(PAQ.combined.signif)
groupingFactor<-1
plotGroup<-1
totalStimuli<-length(unique(data.merged.long$stimuliID))
uniqueStimuli<-unique(data.merged.long$stimuliID)
stimuliGrps<-split(sort(uniqueStimuli), 
                   ceiling(seq_along(uniqueStimuli)/
                                   (totalStimuli/groupingFactor)))
p.8PAQ.box<-ggplot(data = data.merged.long %>% 
                           mutate(stimuliID=as.factor(stimuliID),
                                  PAQ=case_when(PAQ == "eventful"~"e",
                                        PAQ == "vibrant"~"v",
                                        PAQ == "pleasant"~"p",
                                        PAQ == "calm"~"ca",
                                        PAQ == "uneventful"~"u",
                                        PAQ == "monotonous"~"m",
                                        PAQ == "annoying"~"a",
                                        PAQ == "chaotic"~"ch"),
                              PAQ=factor(PAQ, level=c("e","v",
                                              "p","ca","u",
                                              "m","a",
                                              "ch"))) %>%
                           dplyr::filter(
                                   stimuliID %in% stimuliGrps[[plotGroup]]),
                   aes(x = stimuliID, y = Score)) +
        geom_boxplot(aes(fill=ETHNICITY)) +
        geom_signif(data=PAQ.combined.signif %>%
                            dplyr::filter(grepl("MY:M -",comparisons)) %>%
                            dplyr::filter(
                                    stimuliID %in% stimuliGrps[[plotGroup]] &
                                            grepl("MY:M -",comparisons)),
                    inherit.aes = F,
                    mapping=aes(xmin=x,xmax=xend,y_position=y,
                                annotations=ann.labels,group=stimuliID),
                    textsize = 4 ,color="black",vjust = 0.4,
                    tip_length = 0.05, manual=T) +
        geom_signif(data=PAQ.combined.signif %>%
                            dplyr::filter(grepl("MY:O -",comparisons)) %>%
                            dplyr::filter(
                                    stimuliID %in% stimuliGrps[[plotGroup]] &
                                            grepl("MY:O -",comparisons)),
                    inherit.aes = F,
                    mapping=aes(xmin=x, xmax=xend, y_position=y,
                                annotations=ann.labels,group=stimuliID),
                    textsize = 4 ,color="black",vjust = 0.4,
                    tip_length = 0.05, manual=T) +
        
        ylim(c(0,140)) + xlab("Stimuli") + 
        facet_wrap(facets = ~PAQ, ncol = 1, strip.position="right") +
        theme(legend.position="bottom")
Warning in geom_signif(data = PAQ.combined.signif %>% dplyr::filter(grepl("MY:M
-", : Ignoring unknown aesthetics: xmin, xmax, y_position, and annotations

Warning in geom_signif(data = PAQ.combined.signif %>% dplyr::filter(grepl("MY:O
-", : Ignoring unknown aesthetics: xmin, xmax, y_position, and annotations
p.8PAQ.box
Warning: The following aesthetics were dropped during statistical transformation: xmax,
y_position
â„ą This can happen when ggplot fails to infer the correct grouping structure in
  the data.
â„ą Did you forget to specify a `group` aesthetic or to convert a numerical
  variable into a factor?

Warning: The following aesthetics were dropped during statistical transformation: xmax,
y_position
â„ą This can happen when ggplot fails to infer the correct grouping structure in
  the data.
â„ą Did you forget to specify a `group` aesthetic or to convert a numerical
  variable into a factor?
The following aesthetics were dropped during statistical transformation: xmax,
y_position
â„ą This can happen when ggplot fails to infer the correct grouping structure in
  the data.
â„ą Did you forget to specify a `group` aesthetic or to convert a numerical
  variable into a factor?

#ggsave(paste0("boxplots.pdf"),plot = p.8PAQ.box, width = 1700, 
#       height = 2300, units = "px",scale = 1.4)

ggsave(paste0("./outputs/boxplots.pdf"),
       plot = p.8PAQ.box, width = 2300, 
       height = 2300, units = "px",scale = 1.4)
Warning: The following aesthetics were dropped during statistical transformation: xmax,
y_position
â„ą This can happen when ggplot fails to infer the correct grouping structure in
  the data.
â„ą Did you forget to specify a `group` aesthetic or to convert a numerical
  variable into a factor?
The following aesthetics were dropped during statistical transformation: xmax,
y_position
â„ą This can happen when ggplot fails to infer the correct grouping structure in
  the data.
â„ą Did you forget to specify a `group` aesthetic or to convert a numerical
  variable into a factor?
The following aesthetics were dropped during statistical transformation: xmax,
y_position
â„ą This can happen when ggplot fails to infer the correct grouping structure in
  the data.
â„ą Did you forget to specify a `group` aesthetic or to convert a numerical
  variable into a factor?

Median contour plot for ISOPL and ISOEV across all stimuli

#Plot ISOPL and ISOEV contour plot

ISOPL.signif <- data.cit.sig %>%
        dplyr::filter(PAQ %in% c("ISOPL","ISOEV")) %>%
        dplyr::mutate(stimuliID=as.numeric(stimuliID))

ISOPLEV.combined.signif <- data.cit.sig %>%
        #only ISOPL and ISOEV for plotting signif in contours
        dplyr::filter(PAQ %in% c("ISOPL","ISOEV")) %>%
        #extract comparison pair
        dplyr::mutate(stimuliID=as.numeric(stimuliID),
               #left comparison pair
               ETHNICITY=ifelse(grepl("SG \\-",comparisons),"SG",
                         ifelse(grepl("MY:O -",comparisons),
                                     "MY:O","MY:M"))) %>%
        #retrieve ISOPL and ISOEV median values of 1st comparison pair
        left_join(data.ISOPLEV.median,by=c("stimuliID","ETHNICITY")) %>%
        #update colname to reflect PAIR1
        dplyr::mutate(PAIR1.ETHNICITY=ETHNICITY, 
                      PAIR1.ISOPL=ISOPL, 
                      PAIR1.ISOEV=ISOEV,
               #right comparison pair
               ETHNICITY=ifelse(grepl("- SG",comparisons),"SG",
                         ifelse(grepl("- MY:O",comparisons),
                                     "MY:O","MY:M")), .keep="unused") %>%
        #retrieve ISOPL and ISOEV median values of 2nd comparison pair
        left_join(data.ISOPLEV.median,by=c("stimuliID","ETHNICITY")) %>%
         #update colname to reflect PAIR2
        dplyr::mutate(PAIR2.ETHNICITY=ETHNICITY, 
                      PAIR2.ISOPL=ISOPL, 
                      PAIR2.ISOEV=ISOEV,
               .keep="unused") %>%
        #generate significance labels
        dplyr::mutate(ann.labels=ifelse(
                altP.adjusted<0.0001,
                "****",
                ifelse(altP.adjusted<0.001,
                       "***",
                       ifelse(altP.adjusted<0.01,
                              "**",
                              ifelse(altP.adjusted<0.05,"*","ns"))))) 

#create dataframe for ISOEV signif brace plotting
temp.df<-ISOPLEV.combined.signif %>% filter(PAQ=="ISOEV") %>%
        pivot_longer(cols = c("PAIR1.ISOEV","PAIR2.ISOEV"),
                     values_to = c("ISOEV")) %>%
        dplyr::select(c(ISOEV))
brace.df<-ISOPLEV.combined.signif %>% filter(PAQ=="ISOEV") %>%
        pivot_longer(cols = c("PAIR1.ISOPL","PAIR2.ISOPL"),
                     values_to = c("ISOPL")) %>%
        cbind(.,temp.df)

p.ISOPLEV.contour.signif<-p.ISOPLEV.contour.facetedStimuli + 
        #draw signif braces for ISOPL
        geom_signif(data = ISOPLEV.combined.signif %>% filter(PAQ=="ISOPL"),
                    inherit.aes = F,
                    aes(y_position=c(0.5,0.9,0.2,0.4,0.8,0.6,0.2,0.3),
                        xmin=PAIR1.ISOPL,
                        xmax=PAIR2.ISOPL,
                        annotations = ann.labels),
                    manual = T) +
        #draw signif braces for ISOEV
        #right side brace: stimuli 4
        stat_brace(data = brace.df %>% filter(stimuliID %in% c(4,20)),
                   mapping=aes(x=ISOPL,y=ISOEV, 
                               label=ann.labels),
                   inherit.aes = F, 
                   rotate = 90, labelrotate = 90, labelsize = 5,
                   distance = 0.2,width = 0.2,bending=0.01) +
        #left side brace: stimuli 15
        stat_brace(data = brace.df %>% filter(stimuliID == 15),
                   mapping=aes(x=ISOPL,y=ISOEV, 
                               label=ann.labels),
                   inherit.aes = F, 
                   rotate = 270, labelrotate = 270, labelsize = 5, 
                   labeldistance = 0.3,
                   distance = 0.5,width = 0.2,bending=0.01) +
        #right side brace: stimuli 7
        stat_brace(data = brace.df %>% filter(stimuliID == 7) %>% .[1:2,],
                   mapping=aes(x=ISOPL,y=ISOEV,
                               label=ann.labels),
                   inherit.aes = F,
                   rotate = 90, labelrotate = 90, labelsize = 5,
                   labeldistance = 0.1,
                   distance = 0.05,width = 0.2,bending=0.01)+
        #left side brace: stimuli 7
        stat_brace(data = brace.df %>% filter(stimuliID == 7) %>% .[3:4,],
                   mapping=aes(x=ISOPL,y=ISOEV,
                               label=ann.labels),
                   inherit.aes = F,
                   rotate = 270, labelrotate = 270, labelsize = 5,
                   labeldistance = 0.3,
                   distance = 0.4,width = 0.2,bending=0.01) +
        #right side brace: stimuli 12
        stat_brace(data = brace.df %>% filter(stimuliID == 12) %>% .[1:2,],
                   mapping=aes(x=ISOPL,y=ISOEV, 
                               label=ann.labels),
                   inherit.aes = F, 
                   rotate = 90, labelrotate = 90, labelsize = 5, 
                   labeldistance = 0.1,
                   distance = 0.2,width = 0.2,bending=0.01) +
        #left side brace: stimuli 12
        stat_brace(data = brace.df %>% filter(stimuliID == 12) %>% .[3:4,],
                   mapping=aes(x=ISOPL,y=ISOEV,
                               label=ann.labels),
                   inherit.aes = F,
                   rotate = 270, labelrotate = 270, labelsize = 5,
                   labeldistance = 0.2,
                   distance = 0.4,width = 0.2,bending=0.01) +
        #right side brace: stimuli 22
        stat_brace(data = brace.df %>% filter(stimuliID == 22) %>% .[1:2,],
                   mapping=aes(x=ISOPL,y=ISOEV, 
                               label=ann.labels),
                   inherit.aes = F, 
                   rotate = 90, labelrotate = 90, labelsize = 5,
                   distance = 0.1,width = 0.2,bending=0.01) +
        #left side brace: stimuli 22
        stat_brace(data = brace.df %>% filter(stimuliID == 22) %>% .[3:4,],
                   mapping=aes(x=ISOPL,y=ISOEV,
                               label=ann.labels),
                   inherit.aes = F,
                   rotate = 270, labelrotate = 270, labelsize = 5,
                   labeldistance = 0.2,
                   distance = 0.25,width = 0.2,bending=0.01) +
        theme(legend.position = "bottom",
              axis.text.x=element_text(angle = 90, vjust = 0.5, hjust=1))
Warning in geom_signif(data = ISOPLEV.combined.signif %>% filter(PAQ == :
Ignoring unknown aesthetics: y_position, xmin, xmax, and annotations
p.ISOPLEV.contour.signif

ggsave("./outputs/ISOPLEVMedianContourNew.pdf",
       plot = p.ISOPLEV.contour.signif, 
       width = 2500, height = 1150, units = "px",scale = 1.4)

PCA

Correlation matrix

#perform PCA on 8 attributes
#my:m group
data.merged.mym<-data.satp.zsm2.l$data.subj.zsm2 %>%
        dplyr::filter(ETHNICITY=="MY:M") %>%
        dplyr::select(c(eventful,vibrant,
                        pleasant,calm,
                        uneventful,monotonous,
                        annoying,chaotic))
data.merged.mym.cor<-cor(data.merged.mym)

#my:o group
data.merged.myo<-data.satp.zsm2.l$data.subj.zsm2 %>%
        dplyr::filter(ETHNICITY=="MY:O") %>%
        dplyr::select(c(eventful,vibrant,
                        pleasant,calm,
                        uneventful,monotonous,
                        annoying,chaotic))
data.merged.myo.cor<-cor(data.merged.myo)

#sg group
data.merged.sg<-data.satp.zsm2.l$data.subj.zsm2 %>%
        dplyr::filter(ETHNICITY=="SG") %>%
        dplyr::select(c(eventful,vibrant,
                        pleasant,calm,
                        uneventful,monotonous,
                        annoying,chaotic))
data.merged.sg.cor<-cor(data.merged.sg)

#araus dataset
data.araus.cor<-cor(
        data.araus %>% 
                dplyr::select(c(eventful,vibrant,
                                pleasant,calm,
                                uneventful,monotonous,
                                annoying,chaotic)))

KMO and Bartlett’s Test of Sphericity

#KMO test
kmo<-rbind(KMO(data.merged.mym.cor)$MSA %>% as.data.frame() %>%
                   mutate(ETHNICITY="MY:M"),
           KMO(data.merged.myo.cor)$MSA %>% as.data.frame() %>%
                   mutate(ETHNICITY="MY:O"),
           KMO(data.merged.sg.cor)$MSA %>% as.data.frame() %>%
                   mutate(ETHNICITY="SG"),
        KMO(data.araus.cor)$MSA %>% as.data.frame() %>%
                   mutate(ETHNICITY="ARAUS")) %>%
        `colnames<-`(c("MSA","ETHNICITY"))
kmo
        MSA ETHNICITY
1 0.8148017      MY:M
2 0.7543526      MY:O
3 0.7701534        SG
4 0.8046084     ARAUS
#Bartlett's Test of Sphericity
spher<-rbind(cortest.bartlett(data.merged.mym.cor,
                              n = nrow(data.merged.mym))$p.value %>% 
                     as.data.frame() %>%
                     dplyr::mutate(ETHNICITY="MY:M"),
             cortest.bartlett(data.merged.myo.cor,
                              n = nrow(data.merged.myo))$p.value %>% 
                     as.data.frame() %>%
                     dplyr::mutate(ETHNICITY="MY:O"),
             cortest.bartlett(data.merged.sg.cor,
                              n = nrow(data.merged.sg))$p.value %>% 
                     as.data.frame() %>%
                     dplyr::mutate(ETHNICITY="SG"),
             cortest.bartlett(data.araus.cor,
                              n = nrow(data.araus))$p.value %>% 
                     as.data.frame() %>%
                     dplyr::mutate(ETHNICITY="ARAUS")) %>%
        `colnames<-`(c("p-value","ETHNICITY"))
spher
        p-value ETHNICITY
1  0.000000e+00      MY:M
2  0.000000e+00      MY:O
3  0.000000e+00        SG
4 1.192315e-161     ARAUS

PCA

#PCA of 8 paq for MY:M
paq.pca.MYM <- data.merged.mym %>%
        prcomp(center = TRUE,scale. = TRUE,retx = TRUE)

#reflect y-axis
paq.pca.MYM$rotation[,2]<-paq.pca.MYM$rotation[,2]*-1

#plot PCA variables 
paq.pca.MYM.p<-fviz_pca_var(paq.pca.MYM,
             col.var = "darkred",
             repel = TRUE     # Avoid text overlapping
)
paq.pca.MYM.p

#PCA of 8 paq for MY:O
paq.pca.MYO <- data.merged.myo %>%
        prcomp(center = TRUE,scale. = TRUE,retx = TRUE)

#plot PCA variables 
paq.pca.MYO.p<-fviz_pca_var(paq.pca.MYO, col.var = "steelblue",
             repel = TRUE     # Avoid text overlapping
)
paq.pca.MYO.p

#PCA of 8 paq for SG
paq.pca.SG <- data.merged.sg %>%
        prcomp(center = TRUE,scale. = TRUE,retx = TRUE)

# #reflect x-axis and y-axis i.e. rotate 180deg
# paq.pca.SG$rotation[,1]<-paq.pca.SG$rotation[,1]*-1
# paq.pca.SG$rotation[,2]<-paq.pca.SG$rotation[,2]*-1

#plot PCA variables 
paq.pca.SG.p<-fviz_pca_var(paq.pca.SG, col.var = "forestgreen",
             repel = TRUE     # Avoid text overlapping
)
paq.pca.SG.p

#PCA of 8 paq for SG
paq.pca.ARAUS <- data.araus %>% 
        dplyr::select(c(eventful,vibrant,
                        pleasant,calm,
                        uneventful,monotonous,
                        annoying,chaotic)) %>%
        prcomp(center = TRUE,scale. = TRUE,retx = TRUE)

#plot PCA variables 
paq.pca.ARAUS.p<-fviz_pca_var(paq.pca.ARAUS, col.var = "maroon",
             repel = TRUE     # Avoid text overlapping
)
paq.pca.ARAUS.p

#summarise PCA data for plotting
pca.paq<-rbind(facto_summarize(paq.pca.SG, "var", axes = 1:2)[,-1] %>%
        rownames_to_column(var = "PAQ") %>%
        dplyr::mutate(ETHNICITY="SG",
                #reflect x-axis and y-axis i.e. rotate 180deg
                Dim.1=Dim.1*-1),
                #Dim.2=Dim.2*-1),
      facto_summarize(paq.pca.MYO, "var", axes = 1:2)[,-1] %>%
        rownames_to_column(var = "PAQ") %>%
        dplyr::mutate(ETHNICITY="MY:O"),
      facto_summarize(paq.pca.MYM, "var", axes = 1:2)[,-1] %>%
        rownames_to_column(var = "PAQ") %>%
        dplyr::mutate(ETHNICITY="MY:M",
                Dim.1=Dim.1*-1), 
        facto_summarize(paq.pca.ARAUS, "var", axes = 1:2)[,-1] %>%
        rownames_to_column(var = "PAQ") %>%
        dplyr::mutate(ETHNICITY="ARAUS",
                Dim.1=Dim.1*-1))

#create rotation matrix for MY:M based on pleasantness at 90 deg
# Rotation angle in radians
rotation.angle.mym <- -atan(
        pca.paq[pca.paq$ETHNICITY=="MY:M" & 
                        pca.paq$PAQ=="pleasant","Dim.2"]/
                        pca.paq[pca.paq$ETHNICITY=="MY:M" & 
                                        pca.paq$PAQ=="pleasant","Dim.1"])

# Create rotation matrix
rotation.matrix.mym <- matrix(c(cos(rotation.angle.mym),
                                -sin(rotation.angle.mym),
                                sin(rotation.angle.mym), 
                                cos(rotation.angle.mym)),
                          nrow = 2, ncol = 2, byrow = TRUE)

# Transpose the endpoint coordinates matrix
endpoint.coordinates.mym <- t(as.matrix(
        pca.paq[pca.paq$ETHNICITY=="MY:M",c("Dim.1","Dim.2")])) 

# Apply rotation to the endpoint coordinates
rotated.coordinates.mym <- rotation.matrix.mym %*% endpoint.coordinates.mym

#create rotation matrix for ARUAS based on pleasantness at 90 deg
# Rotation angle in radians
rotation.angle.araus <- -atan(pca.paq[pca.paq$ETHNICITY=="ARAUS" &
                                              pca.paq$PAQ=="pleasant",
                                      "Dim.2"]/
                        pca.paq[pca.paq$ETHNICITY=="ARAUS" &
                                        pca.paq$PAQ=="pleasant","Dim.1"])

# Create rotation matrix
rotation.matrix.araus <- matrix(c(cos(rotation.angle.araus),
                                  -sin(rotation.angle.araus),
                                  sin(rotation.angle.araus),
                                  cos(rotation.angle.araus)),
                                nrow = 2, ncol = 2, byrow = TRUE)

# Transpose the endpoint coordinates matrix
endpoint.coordinates.araus <- t(as.matrix(pca.paq[pca.paq$ETHNICITY=="ARAUS",c("Dim.1","Dim.2")])) 

# Apply rotation to the endpoint coordinates
rotated.coordinates.araus <- rotation.matrix.araus %*% endpoint.coordinates.araus
#flip along x-axis
rotated.coordinates.araus[2,] <- rotated.coordinates.araus[2,]*-1

pca.paq.rotated <- pca.paq
pca.paq.rotated[pca.paq.rotated$ETHNICITY=="MY:M",c("Dim.1","Dim.2")] <-
        t(rotated.coordinates.mym)
pca.paq.rotated[pca.paq.rotated$ETHNICITY=="ARAUS",c("Dim.1","Dim.2")] <-
        t(rotated.coordinates.araus)


#plot PCA of three groups separately in subplots
p.pca<-ggplot(
        pca.paq.rotated %>%
                mutate(ETHNICITY=factor(
                        ETHNICITY,
                        levels = c("MY:M","MY:O","SG","ARAUS"))),
              aes(x = Dim.1, y = Dim.2)) +
        geom_segment(aes(x=0, y=0,
                         xend=Dim.1, yend=Dim.2, 
                         color = PAQ,
                         linetype = PAQ),  
                     # Add arrows with conditional formatting
                     arrow = arrow(length = unit(0.25, "cm"),
                                   type = "closed",
                                   ), 
                     size = 1,linejoin='mitre') +
        geom_text(aes(label = PAQ), 
                  nudge_x = 0.1, 
                  nudge_y = 0.1, 
                  size = 4) +  # Add labels to arrows
        geom_circle(aes(x0 = 0, y0 = 0, r = 1), 
                    fill = NA, color = "grey",
                    linetype = "dashed") +  # Add circles
        facet_wrap(~ ETHNICITY, ncol = 2) +
        scale_color_manual(values = c("black", "darkgrey",
                                "darkgrey", "black", "darkgrey",
                                "black", "black",
                                "darkgrey")) +  # Specify color scale
        scale_linetype_manual(values = c("solid", "dashed",
                                         "dashed", "solid",
                                         "dashed", "solid",
                                         "solid", 
                                         "dashed")) + 
        # Specify linetype scale
        labs(x = "PC1", y = "PC2", color = "PAQ", linetype = "PAQ") +
        xlim(c(-1.2,1.2)) + ylim(c(-1.2,1.2))+
        theme_minimal() + theme(legend.position = "none",
                                text = element_text(size = 16))
Warning: Using `size` aesthetic for lines was deprecated in ggplot2 3.4.0.
â„ą Please use `linewidth` instead.
p.pca
Warning: Using the `size` aesthetic in this geom was deprecated in ggplot2 3.4.0.
â„ą Please use `linewidth` in the `default_aes` field and elsewhere instead.

ggsave(paste0("./outputs/PCAprojections_araus.pdf"),
       plot = p.pca, width = 4200, 
       height = 4300, units = "px",scale = 1)

Circumplexity Tests

RTHORR

# #RTHORR test
res.rthorr<-RTHORR::randmf_from_df(
        df_list = list(cor(data.satp.zsm2.l$data.subj.zsm2 %>%
                                   dplyr::filter(ETHNICITY=="MY:M") %>%
                                   dplyr::select(c(eventful,vibrant,
                                                   pleasant,calm,
                                                   uneventful,monotonous,
                                                   annoying,chaotic))),
                       cor(data.satp.zsm2.l$data.subj.zsm2 %>%
                                   dplyr::filter(ETHNICITY=="MY:O") %>%
                                   dplyr::select(c(eventful,vibrant,
                                                   pleasant,calm,
                                                   uneventful,monotonous,
                                                   annoying,chaotic))),
                       cor(data.satp.zsm2.l$data.subj.zsm2 %>%
                                   dplyr::filter(ETHNICITY=="SG") %>%
                                   dplyr::select(c(eventful,vibrant,
                                                   pleasant,calm,
                                                   uneventful,monotonous,
                                                   annoying,chaotic))),
                       data.araus.cor),
                       ord = "circular8")

ci.rthorr <- cbind(res.rthorr$RTHOR %>% as.data.frame(),
                  data.frame(ETHNICITY=c("MY:M","MY:O","SG","ARAUS")))
#ci.rthorr
#SSM circumplex tests

# Multiple-group mean-based SSM
res.ssm.mean <- ssm_analyze(
        .data = rbind(data.satp.zsm2.l$data.subj.zsm2 %>%
                    #dplyr::filter(ETHNICITY=="MY:M") %>%
                    dplyr::select(c(pleasant:monotonous),
                                  ISOPL,ISOEV,ETHNICITY) %>%
                    dplyr::mutate(across(c(pleasant:monotonous),
                                  function(x) x/100)),
                    data.araus %>% 
                            dplyr::select(c(eventful:chaotic,
                                            ISOPL,ISOEV)) %>%
                            dplyr::mutate(across(c(eventful:chaotic),
                                                 function(x) x/5)) %>%
                            dplyr::mutate(ETHNICITY="ARAUS")), 
            scales = pleasant:monotonous, 
            angles = c(0,135,45,270,315,180,90,225),
            #angles = c(90,315,45,180,135,270,0,225), 
            grouping = ETHNICITY)
#ssm_table(res.ssm.mean)
#summary(res.ssm.mean)
#CircE: CFI, RMSEA, SRMR
#equal angle only
circE.MYM.ea=CircE.BFGS(data.merged.mym.cor,
                 v.names = rownames(data.merged.mym.cor),
                 m=2,N=n.participsnts.MY.M,r=1, equal.ang = TRUE)
Date: Wed Jul  5 14:09:39 2023 
Data: Circumplex Estimation 
Model:Equal spacing 
Reference variable at 0 degree: eventful 

    -------------------------------
          Initial parameters:      
    -------------------------------
             parameter initial gradient upper lower
a 0          0.0380179        3.7313385   Inf     0
a 2          0.0000000       22.9587076   Inf     0
v eventful   0.4388344        1.2252922   Inf     0
v vibrant    0.4114001        5.4930327   Inf     0
v pleasant   0.1041365        4.5546684   Inf     0
v calm       0.1158413        4.0707495   Inf     0
v uneventful 0.6357560        1.1970479   Inf     0
v monotonous 0.8890249        0.7361073   Inf     0
v annoying   0.3290793        0.4031439   Inf     0
v chaotic    0.2566440        0.6761643   Inf     0
z eventful   0.8043718        1.4974969   Inf     0
z vibrant    0.8152370        4.3899564   Inf     0
z pleasant   0.9492864        2.1522028   Inf     0
z calm       0.9437553        0.2892228   Inf     0
z uneventful 0.7314296        2.1736711   Inf     0
z monotonous 0.6498327        2.6159450   Inf     0
z annoying   0.8489066        0.5507897   Inf     0
z chaotic    0.8798776       -0.4494478   Inf     0
                               
                               
   Constrained (L-BFGS-B) Optimization

Warning in optim(start, func, gr = gradient, control = control, method =
"L-BFGS-B", : method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and
'abstol'

iter    1 value 4.253912
iter    2 value 4.135488
iter    3 value 3.851312
iter    4 value 3.739621
iter    5 value 3.659641
iter    6 value 3.558081
iter    7 value 3.034727
iter    8 value 2.787209
iter    9 value 2.717687
iter   10 value 2.639580
iter   11 value 2.536190
iter   12 value 2.382379
iter   13 value 2.359213
iter   14 value 2.283361
iter   15 value 2.254763
iter   16 value 2.232083
iter   17 value 2.212695
iter   18 value 2.184768
iter   19 value 2.181685
iter   20 value 2.174682
iter   21 value 2.172984
iter   22 value 2.171844
iter   23 value 2.168581
iter   24 value 2.167648
iter   25 value 2.157038
iter   26 value 2.135608
iter   27 value 2.080136
iter   28 value 2.045851
iter   29 value 2.020840
iter   30 value 2.002402
iter   31 value 1.987183
iter   32 value 1.979642
iter   33 value 1.973735
iter   34 value 1.966721
iter   35 value 1.963065
iter   36 value 1.958917
iter   37 value 1.953838
iter   38 value 1.948710
iter   39 value 1.945219
iter   40 value 1.942792
iter   41 value 1.940956
iter   42 value 1.937420
iter   43 value 1.936437
iter   44 value 1.934854
iter   45 value 1.933895
iter   46 value 1.932334
iter   47 value 1.930212
iter   48 value 1.929332
iter   49 value 1.928360
iter   50 value 1.927054
iter   51 value 1.924926
iter   52 value 1.922805
iter   53 value 1.922379
iter   54 value 1.922156
iter   55 value 1.921635
iter   56 value 1.919601
iter   57 value 1.917565
iter   58 value 1.912968
iter   59 value 1.910746
iter   60 value 1.909039
iter   61 value 1.907967
iter   62 value 1.906023
iter   63 value 1.905797
iter   64 value 1.905593
iter   65 value 1.903913
iter   66 value 1.902702
iter   67 value 1.902365
iter   68 value 1.902117
iter   69 value 1.901988
iter   70 value 1.901775
iter   71 value 1.901344
iter   72 value 1.900864
iter   73 value 1.900276
iter   74 value 1.899600
iter   75 value 1.899169
iter   76 value 1.898859
iter   77 value 1.898423
iter   78 value 1.898005
iter   79 value 1.897675
iter   80 value 1.897398
iter   81 value 1.896652
iter   82 value 1.895948
iter   83 value 1.895128
iter   84 value 1.894075
iter   85 value 1.893593
iter   86 value 1.892664
iter   87 value 1.892010
iter   88 value 1.891468
iter   89 value 1.891299
iter   90 value 1.891033
iter   91 value 1.890873
iter   92 value 1.890745
iter   93 value 1.890290
iter   94 value 1.889885
iter   95 value 1.889402
iter   96 value 1.888255
iter   97 value 1.886175
iter   98 value 1.881710
iter   99 value 1.878946
iter  100 value 1.875622
iter  101 value 1.871555
iter  102 value 1.858484
iter  103 value 1.855635
iter  104 value 1.849696
iter  105 value 1.846415
iter  106 value 1.841304
iter  107 value 1.839146
iter  108 value 1.836756
iter  109 value 1.834186
iter  110 value 1.832854
iter  111 value 1.830828
iter  112 value 1.828329
iter  113 value 1.824580
iter  114 value 1.820136
iter  115 value 1.816639
iter  116 value 1.814807
iter  117 value 1.813379
iter  118 value 1.809053
iter  119 value 1.805838
iter  120 value 1.802833
iter  121 value 1.801496
iter  122 value 1.799614
iter  123 value 1.796261
iter  124 value 1.792642
iter  125 value 1.791060
iter  126 value 1.789091
iter  127 value 1.788005
iter  128 value 1.786859
iter  129 value 1.785462
iter  130 value 1.784824
iter  131 value 1.784275
iter  132 value 1.783700
iter  133 value 1.782893
iter  134 value 1.781936
iter  135 value 1.781108
iter  136 value 1.780647
iter  137 value 1.779776
iter  138 value 1.778819
iter  139 value 1.778510
iter  140 value 1.778263
iter  141 value 1.778089
iter  142 value 1.777778
iter  143 value 1.776958
iter  144 value 1.775912
iter  145 value 1.775277
iter  146 value 1.774511
iter  147 value 1.774148
iter  148 value 1.773871
iter  149 value 1.773281
iter  150 value 1.772374
iter  151 value 1.771353
iter  152 value 1.770833
iter  153 value 1.770040
iter  154 value 1.769872
iter  155 value 1.769645
iter  156 value 1.769535
iter  157 value 1.769399
iter  158 value 1.769274
iter  159 value 1.769025
iter  160 value 1.768660
iter  161 value 1.768524
iter  162 value 1.768285
iter  163 value 1.767979
iter  164 value 1.767678
iter  165 value 1.767490
iter  166 value 1.767351
iter  167 value 1.767302
iter  168 value 1.767273
iter  169 value 1.767213
iter  170 value 1.767105
iter  171 value 1.766889
iter  172 value 1.766624
iter  173 value 1.766442
iter  174 value 1.766270
iter  175 value 1.766083
iter  176 value 1.765977
iter  177 value 1.765790
iter  178 value 1.765451
iter  179 value 1.765213
iter  180 value 1.764695
iter  181 value 1.764525
iter  182 value 1.764209
iter  183 value 1.763926
iter  184 value 1.763870
iter  185 value 1.763787
iter  186 value 1.763753
iter  187 value 1.763697
iter  188 value 1.763528
iter  189 value 1.763385
iter  190 value 1.763303
iter  191 value 1.763168
iter  192 value 1.762831
iter  193 value 1.762695
iter  194 value 1.762602
iter  195 value 1.762552
iter  196 value 1.762455
iter  197 value 1.762343
iter  198 value 1.762168
iter  199 value 1.762135
iter  200 value 1.762016
iter  201 value 1.761980
iter  202 value 1.761934
iter  203 value 1.761894
iter  204 value 1.761790
iter  205 value 1.761753
iter  206 value 1.761609
iter  207 value 1.761482
iter  208 value 1.761445
iter  209 value 1.761418
iter  210 value 1.761400
iter  211 value 1.761351
iter  212 value 1.761149
iter  213 value 1.760962
iter  214 value 1.760890
iter  215 value 1.760782
iter  216 value 1.760719
iter  217 value 1.760595
iter  218 value 1.760512
iter  219 value 1.760473
iter  220 value 1.760382
iter  221 value 1.760313
iter  222 value 1.760294
iter  223 value 1.760248
iter  224 value 1.760152
iter  225 value 1.760117
iter  226 value 1.760066
iter  227 value 1.760057
iter  228 value 1.760040
iter  229 value 1.760025
iter  230 value 1.760009
iter  231 value 1.759980
iter  232 value 1.759924
iter  233 value 1.759908
iter  234 value 1.759879
iter  235 value 1.759858
iter  236 value 1.759847
iter  237 value 1.759840
iter  238 value 1.759834
iter  239 value 1.759829
iter  240 value 1.759823
iter  241 value 1.759821
iter  242 value 1.759801
iter  243 value 1.759774
iter  244 value 1.759732
iter  245 value 1.759710
iter  246 value 1.759683
iter  247 value 1.759662
iter  248 value 1.759657
iter  249 value 1.759648
iter  250 value 1.759641
iter  251 value 1.759631
final  value 1.759631 
stopped after 251 iterations

Final gradient value:
 [1] -9.929488e-03 -5.935089e-03 -1.392935e-03  9.156231e-07 -1.147813e-02
 [6] -7.498989e-03  9.867975e-04  4.033294e-03 -3.186218e-03 -5.441061e-03
[11]  6.096630e-04  1.712394e-01 -1.159265e-02 -2.709703e-03  1.164325e-03
[16] -1.196813e-02 -4.133826e-03 -1.374906e-02

Warning in if (class(solve.hess) == "try-error") {: the condition has length > 1
and only the first element will be used


           =================================
              MEASURES OF FIT OF THE MODEL  
           ================================= 

-----------Sample discrepancy function value        : 1.76 

-----------Population discrepancy function value, Fo 
           Point estimate                           : 1.161
           Confidence Interval 90 %                 : ( 0.558 ; 2.02 ) 

-----------ROOT MEAN SQUARE ERROR OF APPROXIMATION 
           Steiger-Lind: RMSEA=sqrt(Fo/Df) 
           Point estimate                           : 0.254
           Confidence Interval 90 %                 : ( 0.176 ; 0.335 ) 

-----------Discrepancy function TEST 
           TEST STATISTIC                           : 52.79
           p values:
           Ho: perfect fit (RMSEA=0.00)             : 0
           Ho: close fit (RMSEA=0.050)              : 0

-----------Power estimation (alpha=0.05),
           N 31
           Degrees of freedom= 18
           Effective number of parameters= 18
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.01) : 0.071
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.06) : 0.062
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.08) : 0.097
       Ho (RMSEA=0.00) vs Alternative (RMSEA=0.05) : 0.081

-----------EXPECTED CROSS VALIDATION INDEX 
           Browne and Cudeck's Index BCI-(MODIFIED AIC) 
           Point estimate                          : 3.476
           Confidence Interval 90 %                : ( 2.872 ; 4.334 ) 

           Hoelter's CN( .05 )                     : 17

-----------Fit index
           Chisquare (null model) =  158.6338   Df =  28
           Bentler-Bonnett NFI                     : 0.667
           Tucker-Lewis NNFI                       : 0.586
           Bentler CFI                             : 0.734
           SRMR                                    : 0.254
           GFI                                     : 0.775
           AGFI                                    : 0.55
-----------Parsimony index
           Akaike Information Criterion            : 0.56
           Bozdogans's Consistent AIC              : -27.023
           Schwarz's Bayesian Criterion            : -0.301

----------------------------------------
 Parameter estimates and Standard Errors 
---------------------------------------- 
             Parameters Stand. Errors
eventful        0.00000       0.00000
vibrant        45.00000       0.00000
pleasant       90.00000       0.00000
calm          135.00000       0.00000
uneventful    180.00000       0.00000
monotonous    225.00000       0.00000
annoying      270.00000       0.00000
chaotic       315.00000       0.00000
a 0             0.04480       0.02973
a 2             0.01553       0.03432
v eventful      0.36413       0.29791
v vibrant    3124.05470   67106.23102
v pleasant      0.07616       0.15773
v calm          0.33665       0.19961
v uneventful    0.64675       0.42368
v monotonous    1.08850       0.69777
v annoying      0.49937       0.32880
v chaotic       0.43003       0.26072
z eventful      1.00048       0.18585
z vibrant       0.01789       0.19209
z pleasant      0.82652       0.12260
z calm          0.80897       0.12710
z uneventful    0.89066       0.18371
z monotonous    0.72705       0.17433
z annoying      0.73788       0.13983
z chaotic       0.79378       0.13689

---------------------------------------------------------------------------
 Estimates (ML) of POLAR ANGLES and COMMUNALITY INDICES
 (approximate, 95 % one at time confidence intervals)
 Note: variable names have been reordered to yield increasing polar angles
--------------------------------------------------------------------------- 
           ang. pos.    (L ;    U) 360-ang. pos.    (L ;    U) comm. ind.
eventful           0   ( 0 ;   0 )           360 ( 360 ; 360 )       0.86
vibrant           45  ( 45 ;  45 )           315 ( 315 ; 315 )       0.02
pleasant          90  ( 90 ;  90 )           270 ( 270 ; 270 )       0.96
calm             135 ( 135 ; 135 )           225 ( 225 ; 225 )       0.86
uneventful       180 ( 180 ; 180 )           180 ( 180 ; 180 )       0.78
monotonous       225 ( 225 ; 225 )           135 ( 135 ; 135 )       0.69
annoying         270 ( 270 ; 270 )            90  ( 90 ;  90 )       0.82
chaotic          315 ( 315 ; 315 )            45  ( 45 ;  45 )       0.84
               (L ;     U)
eventful    ( 0.6 ; 0.97 )
vibrant       ( 0 ;    1 )
pleasant   ( 0.43 ;    1 )
calm       ( 0.69 ; 0.95 )
uneventful ( 0.55 ; 0.92 )
monotonous ( 0.46 ; 0.87 )
annoying    ( 0.6 ; 0.94 )
chaotic    ( 0.64 ; 0.94 )


 (MCSC) Correlation at 180 degrees: -0.886 
----------------------------------------------------
                       b 0    b 1    b 2
Estimates of Betas: 0.0423 0.9431 0.0146
----------------------------------------------------
 CPU Time for optimization 0.51 sec. ( 0 min.)
circE.MYO.ea=CircE.BFGS(data.merged.myo.cor,
                 v.names = rownames(data.merged.mym.cor),
                 m=2,N=n.participsnts.MY.O,r=1, equal.ang = TRUE)
Date: Wed Jul  5 14:09:40 2023 
Data: Circumplex Estimation 
Model:Equal spacing 
Reference variable at 0 degree: eventful 

    -------------------------------
          Initial parameters:      
    -------------------------------
              parameter initial gradient upper lower
a 0          0.06620263       0.08700006   Inf     0
a 2          0.00000000       8.78222153   Inf     0
v eventful   0.33051965       1.29320984   Inf     0
v vibrant    1.24510224       1.17090720   Inf     0
v pleasant   0.13929346       1.10475090   Inf     0
v calm       0.15159816       4.31501778   Inf     0
v uneventful 0.34422900       1.80101144   Inf     0
v monotonous 0.85626166       0.50124140   Inf     0
v annoying   0.39058767       0.27796144   Inf     0
v chaotic    0.42397242       0.60446297   Inf     0
z eventful   0.84830360       1.61873140   Inf     0
z vibrant    0.55540045       4.15690258   Inf     0
z pleasant   0.93277567      -0.70452562   Inf     0
z calm       0.92706956       1.64035291   Inf     0
z uneventful 0.84258910       2.13333956   Inf     0
z monotonous 0.65966327       1.60570768   Inf     0
z annoying   0.82359756      -0.10874380   Inf     0
z chaotic    0.81023595       0.69454238   Inf     0
                               
                               
   Constrained (L-BFGS-B) Optimization

Warning in optim(start, func, gr = gradient, control = control, method =
"L-BFGS-B", : method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and
'abstol'

iter    1 value 2.558279
iter    2 value 1.759753
iter    3 value 1.707995
iter    4 value 1.693992
iter    5 value 1.677564
iter    6 value 1.665773
iter    7 value 1.662506
iter    8 value 1.656589
iter    9 value 1.647549
iter   10 value 1.632893
iter   11 value 1.603836
iter   12 value 1.554234
iter   13 value 1.515173
iter   14 value 1.492574
iter   15 value 1.453425
iter   16 value 1.433247
iter   17 value 1.417495
iter   18 value 1.411923
iter   19 value 1.409272
iter   20 value 1.400531
iter   21 value 1.389784
iter   22 value 1.371490
iter   23 value 1.355407
iter   24 value 1.351996
iter   25 value 1.345262
iter   26 value 1.339262
iter   27 value 1.334438
iter   28 value 1.325466
iter   29 value 1.318820
iter   30 value 1.314632
iter   31 value 1.312040
iter   32 value 1.307587
iter   33 value 1.301441
iter   34 value 1.293750
iter   35 value 1.285079
iter   36 value 1.278793
iter   37 value 1.271084
iter   38 value 1.266312
iter   39 value 1.260303
iter   40 value 1.257679
iter   41 value 1.256476
iter   42 value 1.255397
iter   43 value 1.254574
iter   44 value 1.253812
iter   45 value 1.252947
iter   46 value 1.252099
iter   47 value 1.250874
iter   48 value 1.249407
iter   49 value 1.248151
iter   50 value 1.246846
iter   51 value 1.245692
iter   52 value 1.244810
iter   53 value 1.244163
iter   54 value 1.243942
iter   55 value 1.243868
iter   56 value 1.243783
iter   57 value 1.243627
iter   58 value 1.243225
iter   59 value 1.242203
iter   60 value 1.240332
iter   61 value 1.239001
iter   62 value 1.236785
iter   63 value 1.235168
iter   64 value 1.234291
iter   65 value 1.233710
iter   66 value 1.233357
iter   67 value 1.232984
iter   68 value 1.232741
iter   69 value 1.232483
iter   70 value 1.231966
iter   71 value 1.230777
iter   72 value 1.228993
iter   73 value 1.227132
iter   74 value 1.224997
iter   75 value 1.217996
iter   76 value 1.211924
iter   77 value 1.206326
iter   78 value 1.204377
iter   79 value 1.202852
iter   80 value 1.202350
iter   81 value 1.201876
iter   82 value 1.201488
iter   83 value 1.201123
iter   84 value 1.200778
iter   85 value 1.200348
iter   86 value 1.199994
iter   87 value 1.199705
iter   88 value 1.199480
iter   89 value 1.199189
iter   90 value 1.198796
iter   91 value 1.198490
iter   92 value 1.197997
iter   93 value 1.197672
iter   94 value 1.197414
iter   95 value 1.197246
iter   96 value 1.197070
iter   97 value 1.196919
iter   98 value 1.196812
iter   99 value 1.196750
iter  100 value 1.196683
iter  101 value 1.196648
iter  102 value 1.196606
iter  103 value 1.196549
iter  104 value 1.196530
iter  105 value 1.196519
iter  106 value 1.196512
iter  107 value 1.196504
iter  108 value 1.196497
iter  109 value 1.196483
iter  110 value 1.196475
iter  111 value 1.196472
iter  112 value 1.196470
iter  113 value 1.196468
iter  114 value 1.196463
iter  115 value 1.196459
iter  116 value 1.196456
iter  117 value 1.196455
iter  118 value 1.196454
iter  119 value 1.196454
iter  120 value 1.196454
iter  121 value 1.196453
iter  122 value 1.196453
final  value 1.196453 
converged

Final gradient value:
 [1] -6.649725e-04 -5.018636e-01 -5.302681e-05  1.544339e-06 -8.164022e-07
 [6] -4.085874e-04 -1.039628e-04 -3.482420e-05 -1.490387e-04  1.070845e-05
[11] -5.458450e-04  2.116826e-03  2.760413e-04 -4.744922e-04  1.036361e-04
[16]  2.552700e-04 -3.561352e-04 -3.538721e-04

Warning in if (class(solve.hess) == "try-error") {: the condition has length > 1
and only the first element will be used


           =================================
              MEASURES OF FIT OF THE MODEL  
           ================================= 

 NOTE: ONE PARAMETER ( a 2 ) IS ON A BOUNDARY.

-----------Model degrees of freedom= 18 
           Active Bound= 1 
           The appropriate distribution for the test statistic lies between 
           chi-squared distribution with 18 and with 18 + 1 degrees of freedom.

-----------Values enclosed in square brackets are based on 18 + 1 = 19 degrees of freedom.

-----------Sample discrepancy function value        : 1.196 

-----------Population discrepancy function value, Fo 
           Point estimate                           : 0.616 [ 0.582 ]
           Confidence Interval 90 %                 : ( 0.173 [ 0.147 ] ; 1.312 [ 1.275 ] ) 

-----------ROOT MEAN SQUARE ERROR OF APPROXIMATION 
           Steiger-Lind: RMSEA=sqrt(Fo/Df) 
           Point estimate                           : 0.185 [ 0.175 ]
           Confidence Interval 90 %                 : ( 0.098 [ 0.088 ] ; 0.27 [ 0.259 ] ) 

-----------Discrepancy function TEST 
           TEST STATISTIC                           : 37.09
           p values:
           Ho: perfect fit (RMSEA=0.00)             : 0.005 [ 0.008 ]
           Ho: close fit (RMSEA=0.050)              : 0.011 [ 0.016 ]

-----------Power estimation (alpha=0.05),
           N 32
           Degrees of freedom= 18 [ 19 ]
           Effective number of parameters= 18
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.01) : 0.071 [ 0.072 ]
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.06) : 0.062 [ 0.062 ]
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.08) : 0.099 [ 0.1 ]
       Ho (RMSEA=0.00) vs Alternative (RMSEA=0.05) : 0.082 [ 0.083 ]

-----------EXPECTED CROSS VALIDATION INDEX 
           Browne and Cudeck's Index BCI-(MODIFIED AIC) 
           Point estimate                          : 2.833 [ 2.831 ]
           Confidence Interval 90 %                : ( 2.39 [ 2.396 ] ; 3.529 [ 3.524 ] ) 

           Hoelter's CN( .05 )                     : 25 [ 26 ]

-----------Fit index
           Chisquare (null model) =  137.1038   Df =  28
           Bentler-Bonnett NFI                     : 0.729
           Tucker-Lewis NNFI                       : 0.728 [ 0.756 ]
           Bentler CFI                             : 0.825 [ 0.825 ]
           SRMR                                    : 0.217
           GFI                                     : 0.867 [ 0.873 ]
           AGFI                                    : 0.734 [ 0.759 ]
-----------Parsimony index
           Akaike Information Criterion            : 0.035
           Bozdogans's Consistent AIC              : -43.293
           Schwarz's Bayesian Criterion            : -0.816

----------------------------------------
 Parameter estimates and Standard Errors 
---------------------------------------- 
             Parameters Stand. Errors
eventful        0.00000       0.00000
vibrant        45.00000       0.00000
pleasant       90.00000       0.00000
calm          135.00000       0.00000
uneventful    180.00000       0.00000
monotonous    225.00000       0.00000
annoying      270.00000       0.00000
chaotic       315.00000       0.00000
a 0             0.03336       0.02592
a 2             0.00000       0.02985
v eventful      0.13473       0.17611
v vibrant      83.02666     284.53650
v pleasant      0.22179       0.21143
v calm          0.37249       0.19372
v uneventful    0.17314       0.14965
v monotonous    1.63141       1.03999
v annoying      0.76944       0.49925
v chaotic       0.68945       0.36463
z eventful      1.20522       0.18244
z vibrant       0.10901       0.18606
z pleasant      0.77069       0.12511
z calm          0.88788       0.13618
z uneventful    1.18548       0.17198
z monotonous    0.60583       0.16109
z annoying      0.67191       0.14483
z chaotic       0.79433       0.14946

 NOTE! ACTIVE BOUNDS FOR:  a 2 ; 

---------------------------------------------------------------------------
 Estimates (ML) of POLAR ANGLES and COMMUNALITY INDICES
 (approximate, 95 % one at time confidence intervals)
 Note: variable names have been reordered to yield increasing polar angles
--------------------------------------------------------------------------- 
           ang. pos.    (L ;    U) 360-ang. pos.    (L ;    U) comm. ind.
eventful           0   ( 0 ;   0 )           360 ( 360 ; 360 )       0.94
vibrant           45  ( 45 ;  45 )           315 ( 315 ; 315 )       0.11
pleasant          90  ( 90 ;  90 )           270 ( 270 ; 270 )       0.90
calm             135 ( 135 ; 135 )           225 ( 225 ; 225 )       0.85
uneventful       180 ( 180 ; 180 )           180 ( 180 ; 180 )       0.92
monotonous       225 ( 225 ; 225 )           135 ( 135 ; 135 )       0.62
annoying         270 ( 270 ; 270 )            90  ( 90 ;  90 )       0.75
chaotic          315 ( 315 ; 315 )            45  ( 45 ;  45 )       0.77
               (L ;     U)
eventful    ( 0.6 ; 0.99 )
vibrant       ( 0 ; 0.95 )
pleasant   ( 0.64 ; 0.98 )
calm        ( 0.7 ; 0.94 )
uneventful ( 0.72 ; 0.98 )
monotonous ( 0.39 ; 0.83 )
annoying   ( 0.52 ; 0.91 )
chaotic    ( 0.58 ;  0.9 )


 (MCSC) Correlation at 180 degrees: -0.935 
----------------------------------------------------
                       b 0    b 1 b 2
Estimates of Betas: 0.0323 0.9677   0
----------------------------------------------------
 CPU Time for optimization 0.237 sec. ( 0 min.)
circE.SG.ea=CircE.BFGS(data.merged.sg.cor,
                 v.names = rownames(data.merged.mym.cor),
                 m=2,N=n.participsnts.SG,r=1, equal.ang = TRUE)
Date: Wed Jul  5 14:09:40 2023 
Data: Circumplex Estimation 
Model:Equal spacing 
Reference variable at 0 degree: eventful 

    -------------------------------
          Initial parameters:      
    -------------------------------
              parameter initial gradient upper lower
a 0          0.02019079      11.21780273   Inf     0
a 2          0.00000000      20.59179294   Inf     0
v eventful   0.29430282       2.76582931   Inf     0
v vibrant    0.71234795       2.30510030   Inf     0
v pleasant   0.10612477       2.67158267   Inf     0
v calm       0.10084613      10.03764467   Inf     0
v uneventful 0.36058846       2.68890873   Inf     0
v monotonous 1.35967739       0.59128961   Inf     0
v annoying   0.23341583       0.62986034   Inf     0
v chaotic    0.29767556       1.36338635   Inf     0
z eventful   0.86361738       2.54811651   Inf     0
z vibrant    0.70536260       3.15128286   Inf     0
z pleasant   0.94834443      -0.66964276   Inf     0
z calm       0.95084737       2.99546758   Inf     0
z uneventful 0.83582880       2.89587973   Inf     0
z monotonous 0.52936793       3.48483191   Inf     0
z annoying   0.89007942      -0.01599357   Inf     0
z chaotic    0.86217789       1.20862969   Inf     0
                               
                               
   Constrained (L-BFGS-B) Optimization

Warning in optim(start, func, gr = gradient, control = control, method =
"L-BFGS-B", : method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and
'abstol'

iter    1 value 4.212549
iter    2 value 3.994985
iter    3 value 3.578270
iter    4 value 2.887797
iter    5 value 2.736871
iter    6 value 2.673630
iter    7 value 2.642253
iter    8 value 2.623043
iter    9 value 2.600339
iter   10 value 2.583147
iter   11 value 2.541715
iter   12 value 2.529712
iter   13 value 2.512055
iter   14 value 2.501320
iter   15 value 2.477537
iter   16 value 2.439790
iter   17 value 2.365766
iter   18 value 2.311859
iter   19 value 2.304111
iter   20 value 2.274282
iter   21 value 2.242070
iter   22 value 2.222357
iter   23 value 2.210288
iter   24 value 2.200056
iter   25 value 2.196009
iter   26 value 2.189996
iter   27 value 2.186965
iter   28 value 2.184404
iter   29 value 2.183543
iter   30 value 2.183187
iter   31 value 2.182488
iter   32 value 2.180423
iter   33 value 2.179858
iter   34 value 2.179407
iter   35 value 2.179332
iter   36 value 2.179161
iter   37 value 2.178881
iter   38 value 2.178623
iter   39 value 2.178331
iter   40 value 2.177985
iter   41 value 2.177879
iter   42 value 2.177434
iter   43 value 2.176402
iter   44 value 2.175118
iter   45 value 2.174163
iter   46 value 2.173272
iter   47 value 2.172852
iter   48 value 2.172511
iter   49 value 2.172275
iter   50 value 2.171523
iter   51 value 2.170610
iter   52 value 2.168925
iter   53 value 2.167965
iter   54 value 2.164185
iter   55 value 2.163618
iter   56 value 2.163361
iter   57 value 2.162833
iter   58 value 2.162176
iter   59 value 2.161992
iter   60 value 2.161002
iter   61 value 2.160817
iter   62 value 2.160731
iter   63 value 2.160583
iter   64 value 2.160506
iter   65 value 2.160382
iter   66 value 2.160318
iter   67 value 2.160206
iter   68 value 2.160153
iter   69 value 2.160046
iter   70 value 2.160003
iter   71 value 2.159878
iter   72 value 2.159813
iter   73 value 2.158703
iter   74 value 2.157405
iter   75 value 2.156341
iter   76 value 2.156129
iter   77 value 2.155460
iter   78 value 2.154845
iter   79 value 2.151870
iter   80 value 2.150344
iter   81 value 2.148736
iter   82 value 2.147714
iter   83 value 2.147352
iter   84 value 2.147323
iter   85 value 2.147308
iter   86 value 2.147303
iter   87 value 2.147285
iter   88 value 2.147268
iter   89 value 2.147152
iter   90 value 2.147107
iter   91 value 2.147064
iter   92 value 2.147037
iter   93 value 2.147016
iter   94 value 2.146991
iter   95 value 2.146949
iter   96 value 2.146915
iter   97 value 2.146863
iter   98 value 2.146815
iter   99 value 2.146744
iter  100 value 2.146325
iter  101 value 2.145538
iter  102 value 2.142934
iter  103 value 2.139212
iter  104 value 2.137066
iter  105 value 2.135708
iter  106 value 2.132027
iter  107 value 2.131660
iter  108 value 2.131396
iter  109 value 2.131211
iter  110 value 2.131160
iter  111 value 2.131067
iter  112 value 2.131030
iter  113 value 2.131014
iter  114 value 2.130973
iter  115 value 2.130945
iter  116 value 2.130909
iter  117 value 2.130882
iter  118 value 2.130865
iter  119 value 2.130841
iter  120 value 2.130826
iter  121 value 2.130819
iter  122 value 2.130817
iter  123 value 2.130817
iter  124 value 2.130814
iter  125 value 2.130814
iter  126 value 2.130813
iter  127 value 2.130813
final  value 2.130813 
converged

Final gradient value:
 [1] -4.802858e-05  1.734684e-04 -1.136262e-03  6.006864e-05 -4.730216e-01
 [6] -3.015430e-01  4.535498e-04  2.665697e-04 -6.326483e-05  9.078994e-05
[11] -1.295326e-03  2.378180e-03 -1.117675e-04 -1.222074e-04 -1.117985e-03
[16] -2.710626e-04  5.792081e-06  2.140254e-04

Warning in if (class(solve.hess) == "try-error") {: the condition has length > 1
and only the first element will be used


           =================================
              MEASURES OF FIT OF THE MODEL  
           ================================= 

 NOTE: 2  PARAMETERS ( v pleasant ; v calm ; ) ARE ON A BOUNDARY.

-----------Model degrees of freedom= 18 
           Active Bounds= 2 
           The appropriate distribution for the test statistic lies between 
           chi-squared distribution with 18 and with 18 + 2 degrees of freedom.
-----------Values enclosed in square brackets are based on 18 + 2 = 20 degrees of freedom.

-----------Sample discrepancy function value        : 2.131 

-----------Population discrepancy function value, Fo 
           Point estimate                           : 1.545 [ 1.491 ]
           Confidence Interval 90 %                 : ( 0.871 [ 0.808 ] ; 2.478 [ 2.408 ] ) 

-----------ROOT MEAN SQUARE ERROR OF APPROXIMATION 
           Steiger-Lind: RMSEA=sqrt(Fo/Df) 
           Point estimate                           : 0.293 [ 0.273 ]
           Confidence Interval 90 %                 : ( 0.22 [ 0.201 ] ; 0.371 [ 0.347 ] ) 

-----------Discrepancy function TEST 
           TEST STATISTIC                           : 66.06
           p values:
           Ho: perfect fit (RMSEA=0.00)             : 0 [ 0 ]
           Ho: close fit (RMSEA=0.050)              : 0 [ 0 ]

-----------Power estimation (alpha=0.05),
           N 32
           Degrees of freedom= 18 [ 20 ]
           Effective number of parameters= 18
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.01) : 0.071 [ 0.073 ]
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.06) : 0.062 [ 0.063 ]
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.08) : 0.099 [ 0.102 ]
       Ho (RMSEA=0.00) vs Alternative (RMSEA=0.05) : 0.082 [ 0.084 ]

-----------EXPECTED CROSS VALIDATION INDEX 
           Browne and Cudeck's Index BCI-(MODIFIED AIC) 
           Point estimate                          : 3.762 [ 3.772 ]
           Confidence Interval 90 %                : ( 3.088 [ 3.09 ] ; 4.695 [ 4.69 ] ) 

           Hoelter's CN( .05 )                     : 14 [ 16 ]

-----------Fit index
           Chisquare (null model) =  167.7914   Df =  28
           Bentler-Bonnett NFI                     : 0.606
           Tucker-Lewis NNFI                       : 0.465 [ 0.539 ]
           Bentler CFI                             : 0.656 [ 0.656 ]
           SRMR                                    : 0.231
           GFI                                     : 0.721 [ 0.728 ]
           AGFI                                    : 0.442 [ 0.51 ]
-----------Parsimony index
           Akaike Information Criterion            : 0.97
           Bozdogans's Consistent AIC              : -14.328
           Schwarz's Bayesian Criterion            : 0.118

----------------------------------------
 Parameter estimates and Standard Errors 
---------------------------------------- 
             Parameters Stand. Errors
eventful        0.00000       0.00000
vibrant        45.00000       0.00000
pleasant       90.00000       0.00000
calm          135.00000       0.00000
uneventful    180.00000       0.00000
monotonous    225.00000       0.00000
annoying      270.00000       0.00000
chaotic       315.00000       0.00000
a 0             0.08744       0.04363
a 2             0.09407       0.07723
v eventful     12.39277      19.35825
v vibrant      76.35831     254.94253
v pleasant      0.00000       0.21080
v calm          0.00000       0.23246
v uneventful   19.05775      33.16990
v monotonous    2.37543       1.98964
v annoying      0.02481       0.22180
v chaotic       0.26013       0.32067
z eventful      0.27450       0.20672
z vibrant       0.11417       0.18975
z pleasant      0.82409       0.14997
z calm          0.87190       0.16811
z uneventful    0.22702       0.19390
z monotonous    0.56366       0.20013
z annoying      0.87011       0.15445
z chaotic       0.81749       0.16629

 NOTE! ACTIVE BOUNDS FOR:  v pleasant ; v calm ; 

---------------------------------------------------------------------------
 Estimates (ML) of POLAR ANGLES and COMMUNALITY INDICES
 (approximate, 95 % one at time confidence intervals)
 Note: variable names have been reordered to yield increasing polar angles
--------------------------------------------------------------------------- 
           ang. pos.    (L ;    U) 360-ang. pos.    (L ;    U) comm. ind.
eventful           0   ( 0 ;   0 )           360 ( 360 ; 360 )       0.27
vibrant           45  ( 45 ;  45 )           315 ( 315 ; 315 )       0.11
pleasant          90  ( 90 ;  90 )           270 ( 270 ; 270 )       1.00
calm             135 ( 135 ; 135 )           225 ( 225 ; 225 )       1.00
uneventful       180 ( 180 ; 180 )           180 ( 180 ; 180 )       0.22
monotonous       225 ( 225 ; 225 )           135 ( 135 ; 135 )       0.54
annoying         270 ( 270 ; 270 )            90  ( 90 ;  90 )       0.99
chaotic          315 ( 315 ; 315 )            45  ( 45 ;  45 )       0.89
               (L ;     U)
eventful   ( 0.06 ;  0.8 )
vibrant       ( 0 ; 0.95 )
pleasant    ( NaN ;    1 )
calm        ( NaN ;    1 )
uneventful ( 0.04 ; 0.78 )
monotonous ( 0.27 ; 0.83 )
annoying      ( 0 ;    1 )
chaotic    ( 0.51 ; 0.99 )


 (MCSC) Correlation at 180 degrees: -0.693 
----------------------------------------------------
                      b 0    b 1    b 2
Estimates of Betas: 0.074 0.8464 0.0796
----------------------------------------------------
 CPU Time for optimization 0.246 sec. ( 0 min.)
circE.ARAUS.ea=CircE.BFGS(data.araus.cor,
                 v.names = rownames(data.araus.cor),
                 m=2,N=29,r=1, equal.ang = TRUE)
Date: Wed Jul  5 14:09:40 2023 
Data: Circumplex Estimation 
Model:Equal spacing 
Reference variable at 0 degree: eventful 

    -------------------------------
          Initial parameters:      
    -------------------------------
              parameter initial gradient upper lower
a 0          0.02324581        1.4522756   Inf     0
a 2          0.00000000        6.0157063   Inf     0
v eventful   0.30627084        0.3259005   Inf     0
v vibrant    0.57251768        0.6251978   Inf     0
v pleasant   0.33043363        0.7215189   Inf     0
v calm       0.26541508        1.7084644   Inf     0
v uneventful 0.29951789        0.7729388   Inf     0
v monotonous 0.66121216        0.9276830   Inf     0
v annoying   0.40018524        0.7633254   Inf     0
v chaotic    0.52628193        0.7035983   Inf     0
z eventful   0.85852186        0.2863350   Inf     0
z vibrant    0.75390659        1.1157102   Inf     0
z pleasant   0.84833960        0.6469518   Inf     0
z calm       0.87605968        0.5442620   Inf     0
z uneventful 0.86139274        0.6556189   Inf     0
z monotonous 0.72262722        1.7100984   Inf     0
z annoying   0.81972945        0.8916314   Inf     0
z chaotic    0.77090119        0.7560998   Inf     0
                               
                               
   Constrained (L-BFGS-B) Optimization

Warning in optim(start, func, gr = gradient, control = control, method =
"L-BFGS-B", : method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and
'abstol'

iter    1 value 1.327357
iter    2 value 1.268367
iter    3 value 1.078895
iter    4 value 1.005699
iter    5 value 0.969548
iter    6 value 0.962845
iter    7 value 0.958924
iter    8 value 0.932701
iter    9 value 0.926755
iter   10 value 0.911592
iter   11 value 0.890127
iter   12 value 0.859714
iter   13 value 0.851584
iter   14 value 0.849682
iter   15 value 0.847025
iter   16 value 0.841368
iter   17 value 0.837535
iter   18 value 0.832896
iter   19 value 0.829277
iter   20 value 0.826542
iter   21 value 0.825882
iter   22 value 0.825150
iter   23 value 0.824297
iter   24 value 0.822256
iter   25 value 0.820089
iter   26 value 0.819477
iter   27 value 0.818507
iter   28 value 0.818016
iter   29 value 0.817466
iter   30 value 0.816772
iter   31 value 0.816099
iter   32 value 0.814445
iter   33 value 0.813075
iter   34 value 0.812115
iter   35 value 0.811966
iter   36 value 0.811836
iter   37 value 0.811688
iter   38 value 0.811542
iter   39 value 0.811398
iter   40 value 0.811276
iter   41 value 0.811182
iter   42 value 0.811101
iter   43 value 0.810968
iter   44 value 0.810790
iter   45 value 0.810770
iter   46 value 0.810662
iter   47 value 0.810633
iter   48 value 0.810630
iter   49 value 0.810625
iter   50 value 0.810617
iter   51 value 0.810612
iter   52 value 0.810608
iter   53 value 0.810604
iter   54 value 0.810603
iter   55 value 0.810601
iter   56 value 0.810600
iter   57 value 0.810599
iter   58 value 0.810599
iter   59 value 0.810599
final  value 0.810599 
converged

Final gradient value:
 [1]  1.479789e-04 -4.038458e-01  6.384158e-05 -2.370502e-04  1.798666e-04
 [6]  3.872255e-05  8.605022e-05  1.715131e-05 -3.775692e-05  6.622207e-05
[11] -1.273757e-05  1.177121e-04  7.660608e-05 -6.849780e-05 -6.013688e-05
[16]  2.726848e-05 -3.564494e-05  1.008626e-04

Warning in if (class(solve.hess) == "try-error") {: the condition has length > 1
and only the first element will be used


           =================================
              MEASURES OF FIT OF THE MODEL  
           ================================= 

 NOTE: ONE PARAMETER ( a 2 ) IS ON A BOUNDARY.

-----------Model degrees of freedom= 18 
           Active Bound= 1 
           The appropriate distribution for the test statistic lies between 
           chi-squared distribution with 18 and with 18 + 1 degrees of freedom.

-----------Values enclosed in square brackets are based on 18 + 1 = 19 degrees of freedom.

-----------Sample discrepancy function value        : 0.811 

-----------Population discrepancy function value, Fo 
           Point estimate                           : 0.169 [ 0.131 ]
           Confidence Interval 90 %                 : ( 0 [ 0 ] ; 0.749 [ 0.708 ] ) 

-----------ROOT MEAN SQUARE ERROR OF APPROXIMATION 
           Steiger-Lind: RMSEA=sqrt(Fo/Df) 
           Point estimate                           : 0.097 [ 0.083 ]
           Confidence Interval 90 %                 : ( 0 [ 0 ] ; 0.204 [ 0.193 ] ) 

-----------Discrepancy function TEST 
           TEST STATISTIC                           : 22.7
           p values:
           Ho: perfect fit (RMSEA=0.00)             : 0.202 [ 0.251 ]
           Ho: close fit (RMSEA=0.050)              : 0.269 [ 0.325 ]

-----------Power estimation (alpha=0.05),
           N 29
           Degrees of freedom= 18 [ 19 ]
           Effective number of parameters= 18
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.01) : 0.069 [ 0.07 ]
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.06) : 0.061 [ 0.061 ]
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.08) : 0.094 [ 0.095 ]
       Ho (RMSEA=0.00) vs Alternative (RMSEA=0.05) : 0.079 [ 0.08 ]

-----------EXPECTED CROSS VALIDATION INDEX 
           Browne and Cudeck's Index BCI-(MODIFIED AIC) 
           Point estimate                          : 2.707 [ 2.704 ]
           Confidence Interval 90 %                : ( 2.538 [ 2.573 ] ; 3.287 [ 3.281 ] ) 

           Hoelter's CN( .05 )                     : 36 [ 38 ]

-----------Fit index
           Chisquare (null model) =  120.3928   Df =  28
           Bentler-Bonnett NFI                     : 0.811
           Tucker-Lewis NNFI                       : 0.921 [ 0.941 ]
           Bentler CFI                             : 0.949 [ 0.949 ]
           SRMR                                    : 0.159
           GFI                                     : 0.959 [ 0.968 ]
           AGFI                                    : 0.918 [ 0.939 ]
-----------Parsimony index
           Akaike Information Criterion            : -0.475
           Bozdogans's Consistent AIC              : -55.915
           Schwarz's Bayesian Criterion            : -1.354

----------------------------------------
 Parameter estimates and Standard Errors 
---------------------------------------- 
             Parameters Stand. Errors
eventful        0.00000       0.00000
vibrant        45.00000       0.00000
pleasant       90.00000       0.00000
calm          135.00000       0.00000
uneventful    180.00000       0.00000
monotonous    225.00000       0.00000
annoying      270.00000       0.00000
chaotic       315.00000       0.00000
a 0             0.00461       0.02687
a 2             0.00000       0.03753
v eventful      0.29558       0.24260
v vibrant       0.90827       0.54331
v pleasant      0.39071       0.29418
v calm          0.83295       0.49145
v uneventful    0.38210       0.28715
v monotonous    1.72968       1.18304
v annoying      0.53343       0.38602
v chaotic       1.14953       0.71052
z eventful      0.86279       0.15094
z vibrant       0.74930       0.16668
z pleasant      0.86138       0.16101
z calm          0.71376       0.15365
z uneventful    0.83805       0.15512
z monotonous    0.62072       0.17840
z annoying      0.82009       0.16787
z chaotic       0.66208       0.16067

 NOTE! ACTIVE BOUNDS FOR:  a 2 ; 

---------------------------------------------------------------------------
 Estimates (ML) of POLAR ANGLES and COMMUNALITY INDICES
 (approximate, 95 % one at time confidence intervals)
 Note: variable names have been reordered to yield increasing polar angles
--------------------------------------------------------------------------- 
           ang. pos.    (L ;    U) 360-ang. pos.    (L ;    U) comm. ind.
eventful           0   ( 0 ;   0 )           360 ( 360 ; 360 )       0.88
vibrant           45  ( 45 ;  45 )           315 ( 315 ; 315 )       0.72
pleasant          90  ( 90 ;  90 )           270 ( 270 ; 270 )       0.85
calm             135 ( 135 ; 135 )           225 ( 225 ; 225 )       0.74
uneventful       180 ( 180 ; 180 )           180 ( 180 ; 180 )       0.85
monotonous       225 ( 225 ; 225 )           135 ( 135 ; 135 )       0.61
annoying         270 ( 270 ; 270 )            90  ( 90 ;  90 )       0.81
chaotic          315 ( 315 ; 315 )            45  ( 45 ;  45 )       0.68
               (L ;     U)
eventful   ( 0.64 ; 0.97 )
vibrant     ( 0.5 ; 0.88 )
pleasant   ( 0.61 ; 0.96 )
calm       ( 0.52 ; 0.89 )
uneventful ( 0.61 ; 0.96 )
monotonous ( 0.36 ; 0.83 )
annoying   ( 0.56 ; 0.94 )
chaotic    ( 0.45 ; 0.86 )


 (MCSC) Correlation at 180 degrees: -0.991 
----------------------------------------------------
                       b 0    b 1 b 2
Estimates of Betas: 0.0046 0.9954   0
----------------------------------------------------
 CPU Time for optimization 0.119 sec. ( 0 min.)
#quasi-circumplex
circE.MYM.q=CircE.BFGS(data.merged.mym.cor,
                 v.names = rownames(data.merged.mym.cor),
                 m=2,N=n.participsnts.MY.M,r=1)
Date: Wed Jul  5 14:09:41 2023 
Data: Circumplex Estimation 
Model:Unconstrained model 
Reference variable at 0 degree: eventful 

    -------------------------------
          Initial parameters:      
    -------------------------------
             parameter initial gradient upper lower
vibrant      0.4866015      0.042008901   Inf  -Inf
pleasant     4.4649237     -0.037242812   Inf  -Inf
calm         4.3918000     -0.002816008   Inf  -Inf
uneventful   2.9755937     -0.009234562   Inf  -Inf
monotonous   2.1126030      0.002673717   Inf  -Inf
annoying     1.3420145     -0.039025515   Inf  -Inf
chaotic      0.9691427     -0.001812710   Inf  -Inf
a 0          0.0380179      2.458383659   Inf     0
a 2          0.0000000      7.549641128   Inf     0
v eventful   0.4388344      0.326173469   Inf     0
v vibrant    0.4114001      0.499638171   Inf     0
v pleasant   0.1041365     -0.401269140   Inf     0
v calm       0.1158413      0.149808825   Inf     0
v uneventful 0.6357560      0.367813110   Inf     0
v monotonous 0.8890249      0.471027463   Inf     0
v annoying   0.3290793      0.527644649   Inf     0
v chaotic    0.2566440      0.652255759   Inf     0
z eventful   0.8043718      0.390198641   Inf     0
z vibrant    0.8152370      0.495552462   Inf     0
z pleasant   0.9492864      0.005489046   Inf     0
z calm       0.9437553      0.081127959   Inf     0
z uneventful 0.7314296      0.720339521   Inf     0
z monotonous 0.6498327      1.414747312   Inf     0
z annoying   0.8489066      0.412948170   Inf     0
z chaotic    0.8798776      0.355028232   Inf     0
                               
                               
   Constrained (L-BFGS-B) Optimization

Warning in optim(start, func, gr = gradient, control = control, method =
"L-BFGS-B", : method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and
'abstol'

iter    1 value 0.218381
iter    2 value 0.184675
iter    3 value 0.124903
iter    4 value 0.105513
iter    5 value 0.085070
iter    6 value 0.082394
iter    7 value 0.081216
iter    8 value 0.080210
iter    9 value 0.078783
iter   10 value 0.076848
iter   11 value 0.075209
iter   12 value 0.073569
iter   13 value 0.071693
iter   14 value 0.070070
iter   15 value 0.066298
iter   16 value 0.064947
iter   17 value 0.063252
iter   18 value 0.062502
iter   19 value 0.061626
iter   20 value 0.060374
iter   21 value 0.059002
iter   22 value 0.058334
iter   23 value 0.057993
iter   24 value 0.057606
iter   25 value 0.057251
iter   26 value 0.057014
iter   27 value 0.056955
iter   28 value 0.056918
iter   29 value 0.056863
iter   30 value 0.056798
iter   31 value 0.056688
iter   32 value 0.056597
iter   33 value 0.056565
iter   34 value 0.056546
iter   35 value 0.056534
iter   36 value 0.056516
iter   37 value 0.056500
iter   38 value 0.056495
iter   39 value 0.056489
iter   40 value 0.056484
iter   41 value 0.056480
iter   42 value 0.056475
iter   43 value 0.056474
iter   44 value 0.056472
iter   45 value 0.056471
iter   46 value 0.056470
iter   47 value 0.056469
iter   48 value 0.056469
iter   49 value 0.056468
iter   50 value 0.056468
final  value 0.056468 
converged

Final gradient value:
 [1]  7.942427e-05 -8.056943e-05 -1.932302e-04 -3.175744e-04  6.815749e-05
 [6]  4.369285e-04  8.564913e-04  3.699884e-04  1.242849e-04 -2.175161e-04
[11] -5.867822e-05 -4.594076e-04 -2.610308e-04 -7.501195e-04  5.648067e-05
[16] -1.182552e-04 -1.638569e-04 -8.136165e-05  3.290033e-05  1.750543e-04
[21] -2.955869e-05  2.549981e-04  4.379288e-05  1.296555e-04  1.859799e-04

Warning in if (class(solve.hess) == "try-error") {: the condition has length > 1
and only the first element will be used


           =================================
              MEASURES OF FIT OF THE MODEL  
           ================================= 

-----------Sample discrepancy function value        : 0.056 

-----------Population discrepancy function value, Fo 
           Point estimate                           : 0
           Confidence Interval 90 %                 : ( 0 ; 0 ) 

-----------ROOT MEAN SQUARE ERROR OF APPROXIMATION 
           Steiger-Lind: RMSEA=sqrt(Fo/Df) 
           Point estimate                           : 0
           Confidence Interval 90 %                 : ( 0.001 ; 0.001 ) 

-----------Discrepancy function TEST 
           TEST STATISTIC                           : 1.69
           p values:
           Ho: perfect fit (RMSEA=0.00)             : 0.999
           Ho: close fit (RMSEA=0.050)              : 1

-----------Power estimation (alpha=0.05),
           N 31
           Degrees of freedom= 11
           Effective number of parameters= 25
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.01) : 0.065
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.06) : 0.059
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.08) : 0.086
       Ho (RMSEA=0.00) vs Alternative (RMSEA=0.05) : 0.074

-----------EXPECTED CROSS VALIDATION INDEX 
           Browne and Cudeck's Index BCI-(MODIFIED AIC) 
           Point estimate                          : 2.748
           Confidence Interval 90 %                : ( 2.748 ; 2.748 ) 

           Hoelter's CN( .05 )                     : 344

-----------Fit index
           Chisquare (null model) =  158.6338   Df =  28
           Bentler-Bonnett NFI                     : 0.989
           Tucker-Lewis NNFI                       : 1.181
           Bentler CFI                             : 1
           SRMR                                    : 0.016
           GFI                                     : 1
           AGFI                                    : 1
-----------Parsimony index
           Akaike Information Criterion            : -1.61
           Bozdogans's Consistent AIC              : -109.156
           Schwarz's Bayesian Criterion            : -2.805

----------------------------------------
 Parameter estimates and Standard Errors 
---------------------------------------- 
             Parameters Stand. Errors
eventful        0.00000       0.00000
vibrant        29.35956      12.52960
pleasant      256.04997      13.37512
calm          251.24387      13.64388
uneventful    172.13321      12.84587
monotonous    121.33559      18.22209
annoying       77.21959      14.27882
chaotic        56.43418      12.94529
a 0             0.03967       0.02562
a 2             0.02653       0.02784
v eventful      0.37121       0.32610
v vibrant       0.55741       0.31556
v pleasant      0.06290       0.06840
v calm          0.13809       0.08507
v uneventful    0.68825       0.60045
v monotonous    1.51744       1.07363
v annoying      0.34680       0.20341
v chaotic       0.29627       0.16473
z eventful      0.85855       0.17084
z vibrant       0.80498       0.15686
z pleasant      0.96564       0.13289
z calm          0.93443       0.13610
z uneventful    0.77232       0.19473
z monotonous    0.62841       0.17930
z annoying      0.85840       0.14824
z chaotic       0.87875       0.14545

---------------------------------------------------------------------------
 Estimates (ML) of POLAR ANGLES and COMMUNALITY INDICES
 (approximate, 95 % one at time confidence intervals)
 Note: variable names have been reordered to yield increasing polar angles
--------------------------------------------------------------------------- 
           ang. pos.    (L ;    U) 360-ang. pos.    (L ;    U) comm. ind.
eventful           0   ( 0 ;   0 )           360 ( 360 ; 360 )       0.85
vibrant           29   ( 5 ;  54 )           331 ( 355 ; 306 )       0.80
chaotic           56  ( 31 ;  82 )           304 ( 329 ; 278 )       0.88
annoying          77  ( 49 ; 105 )           283 ( 311 ; 255 )       0.86
monotonous       121  ( 86 ; 157 )           239 ( 274 ; 203 )       0.63
uneventful       172 ( 147 ; 197 )           188 ( 213 ; 163 )       0.77
calm             251 ( 225 ; 278 )           109 ( 135 ;  82 )       0.94
pleasant         256 ( 230 ; 282 )           104 ( 130 ;  78 )       0.97
               (L ;     U)
eventful   ( 0.57 ; 0.97 )
vibrant    ( 0.61 ; 0.92 )
chaotic    ( 0.73 ; 0.95 )
annoying   ( 0.69 ; 0.95 )
monotonous ( 0.38 ; 0.85 )
uneventful ( 0.46 ; 0.94 )
calm       ( 0.83 ; 0.98 )
pleasant   ( 0.81 ;    1 )


 (MCSC) Correlation at 180 degrees: -0.876 
----------------------------------------------------
                       b 0    b 1    b 2
Estimates of Betas: 0.0372 0.9379 0.0249
----------------------------------------------------
 CPU Time for optimization 0.139 sec. ( 0 min.)
circE.MYO.q=CircE.BFGS(data.merged.myo.cor,
                 v.names = rownames(data.merged.myo.cor),
                 m=2,N=n.participsnts.MY.O,r=1)
Date: Wed Jul  5 14:09:41 2023 
Data: Circumplex Estimation 
Model:Unconstrained model 
Reference variable at 0 degree: eventful 

    -------------------------------
          Initial parameters:      
    -------------------------------
              parameter initial gradient upper lower
vibrant      0.45384745     -0.020867578   Inf  -Inf
pleasant     4.79117045     -0.068774392   Inf  -Inf
calm         4.68607733     -0.066870034   Inf  -Inf
uneventful   3.06659201      0.016983518   Inf  -Inf
monotonous   2.25528126      0.017423799   Inf  -Inf
annoying     1.65637071      0.029366927   Inf  -Inf
chaotic      1.31797429      0.046487239   Inf  -Inf
a 0          0.06620263     -0.071268263   Inf     0
a 2          0.00000000      4.598704639   Inf     0
v eventful   0.33051965      0.165929546   Inf     0
v vibrant    1.24510224      0.650524644   Inf     0
v pleasant   0.13929346     -0.183078882   Inf     0
v calm       0.15159816     -0.061553581   Inf     0
v uneventful 0.34422900      0.162212758   Inf     0
v monotonous 0.85626166      0.515460716   Inf     0
v annoying   0.39058767      0.395511740   Inf     0
v chaotic    0.42397242      0.465149342   Inf     0
z eventful   0.84830360      0.168534990   Inf     0
z vibrant    0.55540045      2.864080124   Inf     0
z pleasant   0.93277567     -0.022114984   Inf     0
z calm       0.92706956      0.002082038   Inf     0
z uneventful 0.84258910      0.102853626   Inf     0
z monotonous 0.65966327      1.394562477   Inf     0
z annoying   0.82359756      0.408772366   Inf     0
z chaotic    0.81023595      0.504614249   Inf     0
                               
                               
   Constrained (L-BFGS-B) Optimization

Warning in optim(start, func, gr = gradient, control = control, method =
"L-BFGS-B", : method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and
'abstol'

iter    1 value 0.444274
iter    2 value 0.373180
iter    3 value 0.243021
iter    4 value 0.219415
iter    5 value 0.208444
iter    6 value 0.202585
iter    7 value 0.200728
iter    8 value 0.191523
iter    9 value 0.185283
iter   10 value 0.176294
iter   11 value 0.170941
iter   12 value 0.168111
iter   13 value 0.157902
iter   14 value 0.153775
iter   15 value 0.145906
iter   16 value 0.140120
iter   17 value 0.132327
iter   18 value 0.124685
iter   19 value 0.118437
iter   20 value 0.116047
iter   21 value 0.113431
iter   22 value 0.111617
iter   23 value 0.107836
iter   24 value 0.102522
iter   25 value 0.096723
iter   26 value 0.092855
iter   27 value 0.089825
iter   28 value 0.086715
iter   29 value 0.084800
iter   30 value 0.083577
iter   31 value 0.081947
iter   32 value 0.081619
iter   33 value 0.080962
iter   34 value 0.080625
iter   35 value 0.080300
iter   36 value 0.079966
iter   37 value 0.079744
iter   38 value 0.079528
iter   39 value 0.079357
iter   40 value 0.078968
iter   41 value 0.078789
iter   42 value 0.078632
iter   43 value 0.078497
iter   44 value 0.078382
iter   45 value 0.077882
iter   46 value 0.077577
iter   47 value 0.077035
iter   48 value 0.076402
iter   49 value 0.075963
iter   50 value 0.075740
iter   51 value 0.075308
iter   52 value 0.075172
iter   53 value 0.075044
iter   54 value 0.074811
iter   55 value 0.074312
iter   56 value 0.073603
iter   57 value 0.073082
iter   58 value 0.072848
iter   59 value 0.072750
iter   60 value 0.072712
iter   61 value 0.072666
iter   62 value 0.072646
iter   63 value 0.072626
iter   64 value 0.072601
iter   65 value 0.072591
iter   66 value 0.072567
iter   67 value 0.072563
iter   68 value 0.072559
iter   69 value 0.072559
iter   70 value 0.072552
iter   71 value 0.072551
iter   72 value 0.072549
iter   73 value 0.072547
iter   74 value 0.072546
iter   75 value 0.072544
iter   76 value 0.072543
iter   77 value 0.072543
final  value 0.072543 
converged

Final gradient value:
 [1]  5.888004e-05  2.326738e-06 -3.849435e-04 -1.479530e-04 -5.435354e-04
 [6]  4.345890e-05  2.872931e-04 -1.104142e-03 -2.823752e-03 -1.203758e-04
[11] -4.827093e-05 -4.185671e-04 -1.809268e-04 -3.509475e-04  5.183775e-06
[16] -1.109408e-04  5.308964e-05 -5.839929e-04 -3.128481e-04 -1.052629e-04
[21] -4.732545e-04 -2.238476e-04  4.508974e-04 -1.005229e-04  1.190792e-04

Warning in if (class(solve.hess) == "try-error") {: the condition has length > 1
and only the first element will be used


           =================================
              MEASURES OF FIT OF THE MODEL  
           ================================= 

-----------Sample discrepancy function value        : 0.073 

-----------Population discrepancy function value, Fo 
           Point estimate                           : 0
           Confidence Interval 90 %                 : ( 0 ; 0 ) 

-----------ROOT MEAN SQUARE ERROR OF APPROXIMATION 
           Steiger-Lind: RMSEA=sqrt(Fo/Df) 
           Point estimate                           : 0
           Confidence Interval 90 %                 : ( 0.001 ; 0.001 ) 

-----------Discrepancy function TEST 
           TEST STATISTIC                           : 2.25
           p values:
           Ho: perfect fit (RMSEA=0.00)             : 0.997
           Ho: close fit (RMSEA=0.050)              : 0.998

-----------Power estimation (alpha=0.05),
           N 32
           Degrees of freedom= 11
           Effective number of parameters= 25
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.01) : 0.065
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.06) : 0.059
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.08) : 0.087
       Ho (RMSEA=0.00) vs Alternative (RMSEA=0.05) : 0.075

-----------EXPECTED CROSS VALIDATION INDEX 
           Browne and Cudeck's Index BCI-(MODIFIED AIC) 
           Point estimate                          : 2.628
           Confidence Interval 90 %                : ( 2.628 ; 2.628 ) 

           Hoelter's CN( .05 )                     : 268

-----------Fit index
           Chisquare (null model) =  137.1038   Df =  28
           Bentler-Bonnett NFI                     : 0.984
           Tucker-Lewis NNFI                       : 1.204
           Bentler CFI                             : 1
           SRMR                                    : 0.02
           GFI                                     : 1
           AGFI                                    : 1
-----------Parsimony index
           Akaike Information Criterion            : -1.54
           Bozdogans's Consistent AIC              : -109.395
           Schwarz's Bayesian Criterion            : -2.722

----------------------------------------
 Parameter estimates and Standard Errors 
---------------------------------------- 
             Parameters Stand. Errors
eventful        0.00000       0.00000
vibrant        25.99823      22.13474
pleasant      272.59492      12.08945
calm          267.26258      12.33370
uneventful    176.50080       8.73763
monotonous    128.62882      16.77769
annoying       94.89389      13.41985
chaotic        76.76282      13.76255
a 0             0.05694       0.02990
a 2             0.02019       0.02472
v eventful      0.13049       0.26519
v vibrant       3.83119       3.23507
v pleasant      0.11728       0.09592
v calm          0.15445       0.10638
v uneventful    0.22527       0.30970
v monotonous    1.52533       0.97815
v annoying      0.41175       0.25439
v chaotic       0.56872       0.32896
z eventful      0.94590       0.17913
z vibrant       0.45564       0.17786
z pleasant      0.94069       0.13492
z calm          0.92618       0.13646
z uneventful    0.90799       0.18182
z monotonous    0.62788       0.16876
z annoying      0.83721       0.15121
z chaotic       0.79620       0.15496

---------------------------------------------------------------------------
 Estimates (ML) of POLAR ANGLES and COMMUNALITY INDICES
 (approximate, 95 % one at time confidence intervals)
 Note: variable names have been reordered to yield increasing polar angles
--------------------------------------------------------------------------- 
           ang. pos.    (L ;    U) 360-ang. pos.    (L ;    U) comm. ind.
eventful           0   ( 0 ;   0 )           360 ( 360 ; 360 )       0.94
vibrant           26 ( 343 ;  69 )           334  ( 17 ; 291 )       0.45
chaotic           77  ( 50 ; 104 )           283 ( 310 ; 256 )       0.80
annoying          95  ( 69 ; 121 )           265 ( 291 ; 239 )       0.84
monotonous       129  ( 96 ; 162 )           231 ( 264 ; 198 )       0.63
uneventful       177 ( 159 ; 194 )           183 ( 201 ; 166 )       0.90
calm             267 ( 243 ; 291 )            93 ( 117 ;  69 )       0.93
pleasant         273 ( 249 ; 296 )            87 ( 111 ;  64 )       0.95
               (L ;     U)
eventful   ( 0.35 ;    1 )
vibrant    ( 0.22 ; 0.76 )
chaotic     ( 0.6 ; 0.92 )
annoying   ( 0.65 ; 0.94 )
monotonous  ( 0.4 ; 0.84 )
uneventful ( 0.48 ; 0.99 )
calm       ( 0.79 ; 0.98 )
pleasant   ( 0.79 ; 0.99 )


 (MCSC) Correlation at 180 degrees: -0.857 
----------------------------------------------------
                       b 0    b 1    b 2
Estimates of Betas: 0.0529 0.9284 0.0187
----------------------------------------------------
 CPU Time for optimization 0.207 sec. ( 0 min.)
circE.SG.q=CircE.BFGS(data.merged.sg.cor,
                 v.names = rownames(data.merged.sg.cor),
                 m=2,N=n.participsnts.SG,r=1)
Date: Wed Jul  5 14:09:41 2023 
Data: Circumplex Estimation 
Model:Unconstrained model 
Reference variable at 0 degree: eventful 

    -------------------------------
          Initial parameters:      
    -------------------------------
              parameter initial gradient upper lower
vibrant      0.55278045      0.003228475   Inf  -Inf
pleasant     5.00053540     -0.189144157   Inf  -Inf
calm         4.91712634     -0.161755316   Inf  -Inf
uneventful   3.10703919      0.051391937   Inf  -Inf
monotonous   2.68269456     -0.013701742   Inf  -Inf
annoying     1.77776315      0.111708934   Inf  -Inf
chaotic      1.38051075      0.114918943   Inf  -Inf
a 0          0.02019079      8.399667273   Inf     0
a 2          0.00000000     10.424621075   Inf     0
v eventful   0.29430282      0.407001454   Inf     0
v vibrant    0.71234795      0.630672070   Inf     0
v pleasant   0.10612477      0.465048057   Inf     0
v calm       0.10084613     -0.157532976   Inf     0
v uneventful 0.36058846      0.487787052   Inf     0
v monotonous 1.35967739      0.609945209   Inf     0
v annoying   0.23341583      0.374115741   Inf     0
v chaotic    0.29767556      1.071806342   Inf     0
z eventful   0.86361738      0.353019662   Inf     0
z vibrant    0.70536260      1.248327077   Inf     0
z pleasant   0.94834443      0.198215080   Inf     0
z calm       0.95084737      0.121062282   Inf     0
z uneventful 0.83582880      0.404969681   Inf     0
z monotonous 0.52936793      3.240265394   Inf     0
z annoying   0.89007942      0.303792799   Inf     0
z chaotic    0.86217789      0.615897347   Inf     0
                               
                               
   Constrained (L-BFGS-B) Optimization

Warning in optim(start, func, gr = gradient, control = control, method =
"L-BFGS-B", : method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and
'abstol'

iter    1 value 0.634597
iter    2 value 0.432457
iter    3 value 0.408826
iter    4 value 0.366249
iter    5 value 0.326854
iter    6 value 0.295882
iter    7 value 0.286380
iter    8 value 0.276062
iter    9 value 0.267249
iter   10 value 0.262335
iter   11 value 0.250710
iter   12 value 0.245854
iter   13 value 0.234613
iter   14 value 0.228401
iter   15 value 0.224507
iter   16 value 0.220314
iter   17 value 0.215982
iter   18 value 0.210619
iter   19 value 0.203187
iter   20 value 0.191760
iter   21 value 0.184533
iter   22 value 0.181883
iter   23 value 0.179083
iter   24 value 0.175256
iter   25 value 0.169706
iter   26 value 0.164596
iter   27 value 0.160958
iter   28 value 0.159041
iter   29 value 0.157541
iter   30 value 0.155958
iter   31 value 0.154605
iter   32 value 0.154310
iter   33 value 0.153806
iter   34 value 0.153593
iter   35 value 0.153303
iter   36 value 0.153139
iter   37 value 0.152986
iter   38 value 0.152923
iter   39 value 0.152760
iter   40 value 0.152545
iter   41 value 0.152312
iter   42 value 0.151931
iter   43 value 0.151629
iter   44 value 0.151298
iter   45 value 0.151086
iter   46 value 0.150827
iter   47 value 0.150617
iter   48 value 0.150252
iter   49 value 0.149560
iter   50 value 0.149110
iter   51 value 0.148155
iter   52 value 0.147606
iter   53 value 0.147338
iter   54 value 0.147159
iter   55 value 0.146675
iter   56 value 0.145988
iter   57 value 0.145681
iter   58 value 0.145475
iter   59 value 0.145415
iter   60 value 0.145387
iter   61 value 0.145362
iter   62 value 0.145317
iter   63 value 0.145306
iter   64 value 0.145293
iter   65 value 0.145280
iter   66 value 0.145260
iter   67 value 0.145232
iter   68 value 0.145228
iter   69 value 0.145215
iter   70 value 0.145213
iter   71 value 0.145211
iter   72 value 0.145210
iter   73 value 0.145209
iter   74 value 0.145208
iter   75 value 0.145207
iter   76 value 0.145206
iter   77 value 0.145206
final  value 0.145206 
converged

Final gradient value:
 [1]  1.610480e-04 -3.712613e-04  2.027300e-04  3.998766e-05  2.325109e-05
 [6]  2.600325e-04  1.195456e-06  3.416580e-04  1.446771e-03 -1.465237e-05
[11] -4.702547e-05  1.954045e-05 -2.480085e-04  1.315206e-04 -1.720666e-05
[16]  3.400575e-04 -1.575061e-04  1.033298e-04 -5.333925e-05  1.809062e-04
[21] -2.908592e-04  2.662791e-05 -3.889385e-04  3.280449e-04 -1.625054e-04

Warning in if (class(solve.hess) == "try-error") {: the condition has length > 1
and only the first element will be used


           =================================
              MEASURES OF FIT OF THE MODEL  
           ================================= 

-----------Sample discrepancy function value        : 0.145 

-----------Population discrepancy function value, Fo 
           Point estimate                           : 0
           Confidence Interval 90 %                 : ( 0 ; 0 ) 

-----------ROOT MEAN SQUARE ERROR OF APPROXIMATION 
           Steiger-Lind: RMSEA=sqrt(Fo/Df) 
           Point estimate                           : 0
           Confidence Interval 90 %                 : ( 0.001 ; 0.001 ) 

-----------Discrepancy function TEST 
           TEST STATISTIC                           : 4.5
           p values:
           Ho: perfect fit (RMSEA=0.00)             : 0.953
           Ho: close fit (RMSEA=0.050)              : 0.965

-----------Power estimation (alpha=0.05),
           N 32
           Degrees of freedom= 11
           Effective number of parameters= 25
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.01) : 0.065
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.06) : 0.059
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.08) : 0.087
       Ho (RMSEA=0.00) vs Alternative (RMSEA=0.05) : 0.075

-----------EXPECTED CROSS VALIDATION INDEX 
           Browne and Cudeck's Index BCI-(MODIFIED AIC) 
           Point estimate                          : 2.628
           Confidence Interval 90 %                : ( 2.628 ; 2.628 ) 

           Hoelter's CN( .05 )                     : 135

-----------Fit index
           Chisquare (null model) =  167.7914   Df =  28
           Bentler-Bonnett NFI                     : 0.973
           Tucker-Lewis NNFI                       : 1.118
           Bentler CFI                             : 1
           SRMR                                    : 0.037
           GFI                                     : 1
           AGFI                                    : 1
-----------Parsimony index
           Akaike Information Criterion            : -1.468
           Bozdogans's Consistent AIC              : -107.142
           Schwarz's Bayesian Criterion            : -2.65

----------------------------------------
 Parameter estimates and Standard Errors 
---------------------------------------- 
             Parameters Stand. Errors
eventful        0.00000       0.00000
vibrant        34.14764      15.09484
pleasant      282.04605      11.49691
calm          277.93356      11.36138
uneventful    178.35150       8.90533
monotonous    146.66851      21.42629
annoying      100.80494      11.72137
chaotic        80.93917      13.07572
a 0             0.03911       0.02181
a 2             0.02158       0.01945
v eventful      0.10030       0.20881
v vibrant       1.65339       1.06276
v pleasant      0.12206       0.07202
v calm          0.06200       0.05857
v uneventful    0.34921       0.32898
v monotonous    3.39778       2.74304
v annoying      0.14748       0.11886
v chaotic       0.46429       0.24012
z eventful      0.94444       0.16123
z vibrant       0.61479       0.16855
z pleasant      0.94923       0.13384
z calm          0.97744       0.13122
z uneventful    0.85456       0.17336
z monotonous    0.47563       0.17608
z annoying      0.93857       0.13973
z chaotic       0.83337       0.14939

---------------------------------------------------------------------------
 Estimates (ML) of POLAR ANGLES and COMMUNALITY INDICES
 (approximate, 95 % one at time confidence intervals)
 Note: variable names have been reordered to yield increasing polar angles
--------------------------------------------------------------------------- 
           ang. pos.    (L ;    U) 360-ang. pos.    (L ;    U) comm. ind.
eventful           0   ( 0 ;   0 )           360 ( 360 ; 360 )       0.95
vibrant           34   ( 5 ;  64 )           326 ( 355 ; 296 )       0.61
chaotic           81  ( 55 ; 107 )           279 ( 305 ; 253 )       0.83
annoying         101  ( 78 ; 124 )           259 ( 282 ; 236 )       0.93
monotonous       147 ( 105 ; 189 )           213 ( 255 ; 171 )       0.48
uneventful       178 ( 161 ; 196 )           182 ( 199 ; 164 )       0.86
calm             278 ( 256 ; 300 )            82 ( 104 ;  60 )       0.97
pleasant         282 ( 260 ; 305 )            78 ( 100 ;  55 )       0.94
               (L ;     U)
eventful   ( 0.38 ;    1 )
vibrant    ( 0.38 ; 0.83 )
chaotic    ( 0.66 ; 0.93 )
annoying   ( 0.76 ; 0.99 )
monotonous ( 0.24 ; 0.77 )
uneventful ( 0.56 ; 0.97 )
calm       ( 0.85 ;    1 )
pleasant   ( 0.85 ; 0.98 )


 (MCSC) Correlation at 180 degrees: -0.886 
----------------------------------------------------
                       b 0    b 1    b 2
Estimates of Betas: 0.0369 0.9428 0.0203
----------------------------------------------------
 CPU Time for optimization 0.21 sec. ( 0 min.)
circE.ARAUS.q=CircE.BFGS(data.araus.cor,
                 v.names = rownames(data.araus.cor),
                 m=2,N=29,r=1)
Date: Wed Jul  5 14:09:42 2023 
Data: Circumplex Estimation 
Model:Unconstrained model 
Reference variable at 0 degree: eventful 

    -------------------------------
          Initial parameters:      
    -------------------------------
              parameter initial gradient upper lower
vibrant      5.79194185      0.006740875   Inf  -Inf
pleasant     4.48269171     -0.001883151   Inf  -Inf
calm         4.28559422      0.004154045   Inf  -Inf
uneventful   3.06502168     -0.012784974   Inf  -Inf
monotonous   2.82071606      0.013784137   Inf  -Inf
annoying     1.29014691     -0.002225632   Inf  -Inf
chaotic      0.75010314     -0.033305375   Inf  -Inf
a 0          0.02324581      0.363731168   Inf     0
a 2          0.00000000      6.809648702   Inf     0
v eventful   0.30627084      0.369161657   Inf     0
v vibrant    0.57251768      0.466606506   Inf     0
v pleasant   0.33043363      0.286720598   Inf     0
v calm       0.26541508      0.254780413   Inf     0
v uneventful 0.29951789      0.245654097   Inf     0
v monotonous 0.66121216      0.619186222   Inf     0
v annoying   0.40018524      0.352534504   Inf     0
v chaotic    0.52628193      0.718001151   Inf     0
z eventful   0.85852186      0.280189237   Inf     0
z vibrant    0.75390659      0.741044759   Inf     0
z pleasant   0.84833960      0.271816701   Inf     0
z calm       0.87605968      0.190900446   Inf     0
z uneventful 0.86139274      0.222683563   Inf     0
z monotonous 0.72262722      1.063826428   Inf     0
z annoying   0.81972945      0.412260131   Inf     0
z chaotic    0.77090119      0.865538137   Inf     0
                               
                               
   Constrained (L-BFGS-B) Optimization

Warning in optim(start, func, gr = gradient, control = control, method =
"L-BFGS-B", : method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and
'abstol'

iter    1 value 0.336524
iter    2 value 0.300494
iter    3 value 0.253001
iter    4 value 0.229414
iter    5 value 0.195231
iter    6 value 0.180488
iter    7 value 0.172316
iter    8 value 0.162638
iter    9 value 0.153228
iter   10 value 0.147839
iter   11 value 0.141288
iter   12 value 0.127817
iter   13 value 0.114406
iter   14 value 0.110917
iter   15 value 0.109082
iter   16 value 0.107777
iter   17 value 0.104493
iter   18 value 0.100899
iter   19 value 0.098310
iter   20 value 0.096624
iter   21 value 0.095727
iter   22 value 0.095065
iter   23 value 0.094005
iter   24 value 0.093692
iter   25 value 0.093562
iter   26 value 0.093459
iter   27 value 0.093286
iter   28 value 0.093169
iter   29 value 0.093099
iter   30 value 0.093048
iter   31 value 0.093005
iter   32 value 0.092994
iter   33 value 0.092924
iter   34 value 0.092865
iter   35 value 0.092817
iter   36 value 0.092789
iter   37 value 0.092764
iter   38 value 0.092756
iter   39 value 0.092747
iter   40 value 0.092739
iter   41 value 0.092727
iter   42 value 0.092721
iter   43 value 0.092710
iter   44 value 0.092707
iter   45 value 0.092706
iter   46 value 0.092705
iter   47 value 0.092704
iter   48 value 0.092703
iter   49 value 0.092702
iter   50 value 0.092702
iter   51 value 0.092702
final  value 0.092702 
converged

Final gradient value:
 [1]  1.695336e-04 -1.066794e-04 -1.196530e-04 -1.348725e-04  9.574616e-06
 [6]  5.042995e-06 -1.891354e-05  3.238377e-04 -4.140119e-04 -6.353524e-06
[11]  1.557292e-04 -4.036366e-05  1.280930e-04  1.184476e-04 -3.725526e-05
[16] -7.715454e-05 -9.471509e-06  2.005944e-05 -5.971350e-05  2.382834e-05
[21]  7.861905e-05  8.532164e-05  6.375402e-06 -2.047589e-05 -8.044891e-06

Warning in if (class(solve.hess) == "try-error") {: the condition has length > 1
and only the first element will be used


           =================================
              MEASURES OF FIT OF THE MODEL  
           ================================= 

-----------Sample discrepancy function value        : 0.093 

-----------Population discrepancy function value, Fo 
           Point estimate                           : 0
           Confidence Interval 90 %                 : ( 0 ; 0 ) 

-----------ROOT MEAN SQUARE ERROR OF APPROXIMATION 
           Steiger-Lind: RMSEA=sqrt(Fo/Df) 
           Point estimate                           : 0
           Confidence Interval 90 %                 : ( 0.001 ; 0.001 ) 

-----------Discrepancy function TEST 
           TEST STATISTIC                           : 2.6
           p values:
           Ho: perfect fit (RMSEA=0.00)             : 0.995
           Ho: close fit (RMSEA=0.050)              : 0.996

-----------Power estimation (alpha=0.05),
           N 29
           Degrees of freedom= 11
           Effective number of parameters= 25
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.01) : 0.064
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.06) : 0.059
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.08) : 0.084
       Ho (RMSEA=0.00) vs Alternative (RMSEA=0.05) : 0.073

-----------EXPECTED CROSS VALIDATION INDEX 
           Browne and Cudeck's Index BCI-(MODIFIED AIC) 
           Point estimate                          : 3.024
           Confidence Interval 90 %                : ( 3.024 ; 3.024 ) 

           Hoelter's CN( .05 )                     : 210

-----------Fit index
           Chisquare (null model) =  120.3928   Df =  28
           Bentler-Bonnett NFI                     : 0.978
           Tucker-Lewis NNFI                       : 1.232
           Bentler CFI                             : 1
           SRMR                                    : 0.023
           GFI                                     : 1
           AGFI                                    : 1
-----------Parsimony index
           Akaike Information Criterion            : -1.693
           Bozdogans's Consistent AIC              : -106.587
           Schwarz's Bayesian Criterion            : -2.914

----------------------------------------
 Parameter estimates and Standard Errors 
---------------------------------------- 
             Parameters Stand. Errors
eventful        0.00000       0.00000
vibrant       331.97590      13.13633
pleasant      257.03391      14.01842
calm          246.81333      13.05895
uneventful    176.39284       9.16794
monotonous    165.52680      15.34491
annoying       74.98817      13.82546
chaotic        42.29889      14.69287
a 0             0.01460       0.02264
a 2             0.02198       0.02807
v eventful      0.26141       0.20218
v vibrant       0.89430       0.55632
v pleasant      0.36789       0.22601
v calm          0.25146       0.17288
v uneventful    0.21723       0.20650
v monotonous    1.35233       0.87672
v annoying      0.34418       0.28681
v chaotic       0.97013       0.58223
z eventful      0.88863       0.15654
z vibrant       0.72438       0.16997
z pleasant      0.85780       0.15622
z calm          0.89780       0.15271
z uneventful    0.90416       0.15988
z monotonous    0.65075       0.17406
z annoying      0.86557       0.16953
z chaotic       0.71433       0.16925

---------------------------------------------------------------------------
 Estimates (ML) of POLAR ANGLES and COMMUNALITY INDICES
 (approximate, 95 % one at time confidence intervals)
 Note: variable names have been reordered to yield increasing polar angles
--------------------------------------------------------------------------- 
           ang. pos.    (L ;    U) 360-ang. pos.    (L ;    U) comm. ind.
eventful           0   ( 0 ;   0 )           360 ( 360 ; 360 )       0.89
chaotic           42  ( 14 ;  71 )           318 ( 346 ; 289 )       0.71
annoying          75  ( 48 ; 102 )           285 ( 312 ; 258 )       0.86
monotonous       166 ( 135 ; 196 )           194 ( 225 ; 164 )       0.65
uneventful       176 ( 158 ; 194 )           184 ( 202 ; 166 )       0.91
calm             247 ( 221 ; 272 )           113 ( 139 ;  88 )       0.89
pleasant         257 ( 230 ; 285 )           103 ( 130 ;  75 )       0.86
vibrant          332 ( 306 ; 358 )            28  ( 54 ;   2 )       0.73
               (L ;     U)
eventful   ( 0.68 ; 0.97 )
chaotic    ( 0.49 ; 0.88 )
annoying    ( 0.6 ; 0.97 )
monotonous ( 0.41 ; 0.85 )
uneventful ( 0.65 ; 0.98 )
calm       ( 0.71 ; 0.97 )
pleasant   ( 0.67 ; 0.95 )
vibrant     ( 0.5 ; 0.89 )


 (MCSC) Correlation at 180 degrees: -0.929 
----------------------------------------------------
                       b 0    b 1    b 2
Estimates of Betas: 0.0141 0.9647 0.0212
----------------------------------------------------
 CPU Time for optimization 0.144 sec. ( 0 min.)
#equal comm only
circE.MYM.ec=CircE.BFGS(data.merged.mym.cor,
                 v.names = rownames(data.merged.mym.cor),
                 m=2,N=n.participsnts.MY.M,r=1,equal.com = TRUE)
Date: Wed Jul  5 14:09:42 2023 
Data: Circumplex Estimation 
Model:Equal radius 
Reference variable at 0 degree: eventful 

    -------------------------------
          Initial parameters:      
    -------------------------------
             parameter initial gradient upper lower
vibrant      0.4866015       0.20280219   Inf  -Inf
pleasant     4.4649237      -0.11096692   Inf  -Inf
calm         4.3918000      -0.07656113   Inf  -Inf
uneventful   2.9755937       0.20770125   Inf  -Inf
monotonous   2.1126030      -0.04905213   Inf  -Inf
annoying     1.3420145      -0.27243621   Inf  -Inf
chaotic      0.9691427      -0.05621773   Inf  -Inf
a 0          0.0380179       0.77358497   Inf     0
a 2          0.0000000       7.62870384   Inf     0
v            0.3975896       4.20977414   Inf     0
z eventful   0.8043718       0.58043893   Inf     0
z vibrant    0.8152370       0.59219998   Inf     0
z pleasant   0.9492864      -1.09771441   Inf     0
z calm       0.9437553      -1.01349993   Inf     0
z uneventful 0.7314296       2.13823789   Inf     0
z monotonous 0.6498327       5.22814923   Inf     0
z annoying   0.8489066       0.03729099   Inf     0
z chaotic    0.8798776      -0.38869130   Inf     0
                               
                               
   Constrained (L-BFGS-B) Optimization

Warning in optim(start, func, gr = gradient, control = control, method =
"L-BFGS-B", : method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and
'abstol'

iter    1 value 1.492766
iter    2 value 1.271359
iter    3 value 0.908731
iter    4 value 0.821915
iter    5 value 0.744798
iter    6 value 0.723871
iter    7 value 0.709480
iter    8 value 0.703614
iter    9 value 0.693925
iter   10 value 0.671272
iter   11 value 0.654959
iter   12 value 0.647022
iter   13 value 0.645579
iter   14 value 0.644638
iter   15 value 0.641375
iter   16 value 0.638991
iter   17 value 0.637948
iter   18 value 0.637166
iter   19 value 0.636706
iter   20 value 0.636331
iter   21 value 0.636055
iter   22 value 0.635858
iter   23 value 0.635756
iter   24 value 0.635694
iter   25 value 0.635663
iter   26 value 0.635649
iter   27 value 0.635636
iter   28 value 0.635627
iter   29 value 0.635624
iter   30 value 0.635620
iter   31 value 0.635619
iter   32 value 0.635618
iter   33 value 0.635618
iter   34 value 0.635618
final  value 0.635618 
converged

Final gradient value:
 [1]  1.534689e-05  2.138419e-04  2.308101e-04  1.601734e-04 -1.817346e-04
 [6] -2.586752e-04 -1.191076e-04 -3.501802e-04  2.724371e-04  4.906707e-05
[11]  3.687079e-04  8.342898e-05 -1.120918e-04 -2.042152e-04  4.562137e-05
[16] -1.586126e-04 -5.096375e-04 -3.773902e-04

Warning in if (class(solve.hess) == "try-error") {: the condition has length > 1
and only the first element will be used


           =================================
              MEASURES OF FIT OF THE MODEL  
           ================================= 

-----------Sample discrepancy function value        : 0.636 

-----------Population discrepancy function value, Fo 
           Point estimate                           : 0.035
           Confidence Interval 90 %                 : ( 0 ; 0.526 ) 

-----------ROOT MEAN SQUARE ERROR OF APPROXIMATION 
           Steiger-Lind: RMSEA=sqrt(Fo/Df) 
           Point estimate                           : 0.044
           Confidence Interval 90 %                 : ( 0 ; 0.171 ) 

-----------Discrepancy function TEST 
           TEST STATISTIC                           : 19.07
           p values:
           Ho: perfect fit (RMSEA=0.00)             : 0.388
           Ho: close fit (RMSEA=0.050)              : 0.473

-----------Power estimation (alpha=0.05),
           N 31
           Degrees of freedom= 18
           Effective number of parameters= 18
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.01) : 0.071
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.06) : 0.062
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.08) : 0.097
       Ho (RMSEA=0.00) vs Alternative (RMSEA=0.05) : 0.081

-----------EXPECTED CROSS VALIDATION INDEX 
           Browne and Cudeck's Index BCI-(MODIFIED AIC) 
           Point estimate                          : 2.349
           Confidence Interval 90 %                : ( 2.314 ; 2.841 ) 

           Hoelter's CN( .05 )                     : 46

-----------Fit index
           Chisquare (null model) =  158.6338   Df =  28
           Bentler-Bonnett NFI                     : 0.88
           Tucker-Lewis NNFI                       : 0.987
           Bentler CFI                             : 0.992
           SRMR                                    : 0.114
           GFI                                     : 0.991
           AGFI                                    : 0.982
-----------Parsimony index
           Akaike Information Criterion            : -0.564
           Bozdogans's Consistent AIC              : -60.743
           Schwarz's Bayesian Criterion            : -1.425

----------------------------------------
 Parameter estimates and Standard Errors 
---------------------------------------- 
             Parameters Stand. Errors
eventful        0.00000       0.00000
vibrant        23.21256      10.16500
pleasant      262.10115      14.04520
calm          257.41004      14.01999
uneventful    173.85489      11.32521
monotonous    139.57430      12.00082
annoying       85.16814      13.32132
chaotic        55.95285      12.32920
a 0             0.04484       0.02660
a 2             0.03934       0.03172
v               0.35371       0.08716
z eventful      0.95210       0.12736
z vibrant       0.89965       0.12269
z pleasant      0.74082       0.09886
z calm          0.74277       0.09935
z uneventful    1.00024       0.13366
z monotonous    0.99405       0.13380
z annoying      0.80329       0.10876
z chaotic       0.80547       0.11042

---------------------------------------------------------------------------
 Estimates (ML) of POLAR ANGLES and COMMUNALITY INDICES
 (approximate, 95 % one at time confidence intervals)
 Note: variable names have been reordered to yield increasing polar angles
--------------------------------------------------------------------------- 
           ang. pos.    (L ;    U) 360-ang. pos.    (L ;    U) comm. ind.    (L
eventful           0   ( 0 ;   0 )           360 ( 360 ; 360 )       0.86 ( 0.8
vibrant           23   ( 3 ;  43 )           337 ( 357 ; 317 )       0.86 ( 0.8
chaotic           56  ( 32 ;  80 )           304 ( 328 ; 280 )       0.86 ( 0.8
annoying          85  ( 59 ; 111 )           275 ( 301 ; 249 )       0.86 ( 0.8
monotonous       140 ( 116 ; 163 )           220 ( 244 ; 197 )       0.86 ( 0.8
uneventful       174 ( 152 ; 196 )           186 ( 208 ; 164 )       0.86 ( 0.8
calm             257 ( 230 ; 285 )           103 ( 130 ;  75 )       0.86 ( 0.8
pleasant         262 ( 235 ; 290 )            98 ( 125 ;  70 )       0.86 ( 0.8
           ;     U)
eventful   ; 0.91 )
vibrant    ; 0.91 )
chaotic    ; 0.91 )
annoying   ; 0.91 )
monotonous ; 0.91 )
uneventful ; 0.91 )
calm       ; 0.91 )
pleasant   ; 0.91 )


 (MCSC) Correlation at 180 degrees: -0.845 
----------------------------------------------------
                       b 0    b 1    b 2
Estimates of Betas: 0.0414 0.9224 0.0363
----------------------------------------------------
 CPU Time for optimization 0.098 sec. ( 0 min.)
circE.MYO.ec=CircE.BFGS(data.merged.myo.cor,
                 v.names = rownames(data.merged.myo.cor),
                 m=2,N=n.participsnts.MY.O,r=1,equal.com = TRUE)
Date: Wed Jul  5 14:09:42 2023 
Data: Circumplex Estimation 
Model:Equal radius 
Reference variable at 0 degree: eventful 

    -------------------------------
          Initial parameters:      
    -------------------------------
              parameter initial gradient upper lower
vibrant      0.45384745    -0.2147537787   Inf  -Inf
pleasant     4.79117045    -0.0291642255   Inf  -Inf
calm         4.68607733    -0.0268916664   Inf  -Inf
uneventful   3.06659201     0.0004925923   Inf  -Inf
monotonous   2.25528126     0.1226147457   Inf  -Inf
annoying     1.65637071     0.0894978332   Inf  -Inf
chaotic      1.31797429     0.1320971906   Inf  -Inf
a 0          0.06620263     0.3106715291   Inf     0
a 2          0.00000000     3.8284408613   Inf     0
v            0.48519553     5.7641657834   Inf     0
z eventful   0.84830360    -0.2761854854   Inf     0
z vibrant    0.55540045     9.8262470291   Inf     0
z pleasant   0.93277567    -1.0803204593   Inf     0
z calm       0.92706956    -1.0138115488   Inf     0
z uneventful 0.84258910    -0.1689556965   Inf     0
z monotonous 0.65966327     3.7909603745   Inf     0
z annoying   0.82359756    -0.0102841035   Inf     0
z chaotic    0.81023595     0.2257295800   Inf     0
                               
                               
   Constrained (L-BFGS-B) Optimization

Warning in optim(start, func, gr = gradient, control = control, method =
"L-BFGS-B", : method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and
'abstol'

iter    1 value 1.578753
iter    2 value 1.114552
iter    3 value 1.041658
iter    4 value 0.998737
iter    5 value 0.952856
iter    6 value 0.941536
iter    7 value 0.923158
iter    8 value 0.912088
iter    9 value 0.907848
iter   10 value 0.907517
iter   11 value 0.907004
iter   12 value 0.906739
iter   13 value 0.906638
iter   14 value 0.906434
iter   15 value 0.906351
iter   16 value 0.906293
iter   17 value 0.906275
iter   18 value 0.906268
iter   19 value 0.906264
iter   20 value 0.906261
iter   21 value 0.906257
iter   22 value 0.906256
iter   23 value 0.906255
iter   24 value 0.906255
iter   25 value 0.906254
iter   26 value 0.906254
iter   27 value 0.906254
final  value 0.906254 
converged

Final gradient value:
 [1] -4.812285e-05 -2.271370e-05  2.512346e-05  1.129702e-04  5.565536e-05
 [6] -1.473325e-04  7.063412e-05 -1.034968e-04  5.366695e-05 -9.962934e-05
[11] -1.012494e-04 -6.963419e-05  4.779564e-05  2.002980e-05 -1.089469e-04
[16] -9.325197e-05  2.763787e-05  1.654290e-04

Warning in if (class(solve.hess) == "try-error") {: the condition has length > 1
and only the first element will be used


           =================================
              MEASURES OF FIT OF THE MODEL  
           ================================= 

-----------Sample discrepancy function value        : 0.906 

-----------Population discrepancy function value, Fo 
           Point estimate                           : 0.323
           Confidence Interval 90 %                 : ( 0 ; 0.919 ) 

-----------ROOT MEAN SQUARE ERROR OF APPROXIMATION 
           Steiger-Lind: RMSEA=sqrt(Fo/Df) 
           Point estimate                           : 0.134
           Confidence Interval 90 %                 : ( 0 ; 0.226 ) 

-----------Discrepancy function TEST 
           TEST STATISTIC                           : 28.09
           p values:
           Ho: perfect fit (RMSEA=0.00)             : 0.061
           Ho: close fit (RMSEA=0.050)              : 0.098

-----------Power estimation (alpha=0.05),
           N 32
           Degrees of freedom= 18
           Effective number of parameters= 18
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.01) : 0.071
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.06) : 0.062
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.08) : 0.099
       Ho (RMSEA=0.00) vs Alternative (RMSEA=0.05) : 0.082

-----------EXPECTED CROSS VALIDATION INDEX 
           Browne and Cudeck's Index BCI-(MODIFIED AIC) 
           Point estimate                          : 2.54
           Confidence Interval 90 %                : ( 2.217 ; 3.136 ) 

           Hoelter's CN( .05 )                     : 33

-----------Fit index
           Chisquare (null model) =  137.1038   Df =  28
           Bentler-Bonnett NFI                     : 0.795
           Tucker-Lewis NNFI                       : 0.856
           Bentler CFI                             : 0.907
           SRMR                                    : 0.108
           GFI                                     : 0.925
           AGFI                                    : 0.85
-----------Parsimony index
           Akaike Information Criterion            : -0.255
           Bozdogans's Consistent AIC              : -52.289
           Schwarz's Bayesian Criterion            : -1.106

----------------------------------------
 Parameter estimates and Standard Errors 
---------------------------------------- 
             Parameters Stand. Errors
eventful        0.00000       0.00000
vibrant        14.36766      11.74454
pleasant      273.56013      15.43450
calm          265.55193      15.48600
uneventful    173.82221      12.62581
monotonous    140.62375      13.53883
annoying       94.39136      15.14789
chaotic        68.51352      14.54744
a 0             0.05660       0.03573
a 2             0.00241       0.02776
v               0.54296       0.13481
z eventful      0.88201       0.12027
z vibrant       0.94475       0.12959
z pleasant      0.70635       0.09671
z calm          0.70832       0.09681
z uneventful    0.87639       0.11935
z monotonous    0.85946       0.11975
z annoying      0.75902       0.10482
z chaotic       0.77776       0.10787

---------------------------------------------------------------------------
 Estimates (ML) of POLAR ANGLES and COMMUNALITY INDICES
 (approximate, 95 % one at time confidence intervals)
 Note: variable names have been reordered to yield increasing polar angles
--------------------------------------------------------------------------- 
           ang. pos.    (L ;    U) 360-ang. pos.    (L ;    U) comm. ind.
eventful           0   ( 0 ;   0 )           360 ( 360 ; 360 )       0.81
vibrant           14 ( 351 ;  37 )           346   ( 9 ; 323 )       0.81
chaotic           69  ( 40 ;  97 )           291 ( 320 ; 263 )       0.81
annoying          94  ( 65 ; 124 )           266 ( 295 ; 236 )       0.81
monotonous       141 ( 114 ; 167 )           219 ( 246 ; 193 )       0.81
uneventful       174 ( 149 ; 199 )           186 ( 211 ; 161 )       0.81
calm             266 ( 235 ; 296 )            94 ( 125 ;  64 )       0.81
pleasant         274 ( 243 ; 304 )            86 ( 117 ;  56 )       0.81
               (L ;     U)
eventful   ( 0.73 ; 0.87 )
vibrant    ( 0.73 ; 0.87 )
chaotic    ( 0.73 ; 0.87 )
annoying   ( 0.73 ; 0.87 )
monotonous ( 0.73 ; 0.87 )
uneventful ( 0.73 ; 0.87 )
calm       ( 0.73 ; 0.87 )
pleasant   ( 0.73 ; 0.87 )


 (MCSC) Correlation at 180 degrees: -0.889 
----------------------------------------------------
                       b 0    b 1    b 2
Estimates of Betas: 0.0534 0.9443 0.0023
----------------------------------------------------
 CPU Time for optimization 0.079 sec. ( 0 min.)
circE.SG.ec=CircE.BFGS(data.merged.sg.cor,
                 v.names = rownames(data.merged.sg.cor),
                 m=2,N=n.participsnts.SG,r=1,equal.com = TRUE)
Date: Wed Jul  5 14:09:42 2023 
Data: Circumplex Estimation 
Model:Equal radius 
Reference variable at 0 degree: eventful 

    -------------------------------
          Initial parameters:      
    -------------------------------
              parameter initial gradient upper lower
vibrant      0.55278045       0.14218007   Inf  -Inf
pleasant     5.00053540      -0.13801638   Inf  -Inf
calm         4.91712634      -0.14443186   Inf  -Inf
uneventful   3.10703919       0.05259313   Inf  -Inf
monotonous   2.68269456       0.19077669   Inf  -Inf
annoying     1.77776315      -0.10313097   Inf  -Inf
chaotic      1.38051075      -0.02694885   Inf  -Inf
a 0          0.02019079       4.52639626   Inf     0
a 2          0.00000000       5.09235075   Inf     0
v            0.43312236       7.65452351   Inf     0
z eventful   0.86361738      -0.19319545   Inf     0
z vibrant    0.70536260       2.96821399   Inf     0
z pleasant   0.94834443      -1.09010138   Inf     0
z calm       0.95084737      -1.11160304   Inf     0
z uneventful 0.83582880       0.33284606   Inf     0
z monotonous 0.52936793      14.24574293   Inf     0
z annoying   0.89007942      -0.68547798   Inf     0
z chaotic    0.86217789      -0.17137922   Inf     0
                               
                               
   Constrained (L-BFGS-B) Optimization

Warning in optim(start, func, gr = gradient, control = control, method =
"L-BFGS-B", : method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and
'abstol'

iter    1 value 2.257207
iter    2 value 1.513869
iter    3 value 1.401812
iter    4 value 1.318278
iter    5 value 1.286532
iter    6 value 1.262219
iter    7 value 1.214699
iter    8 value 1.181337
iter    9 value 1.138454
iter   10 value 1.130101
iter   11 value 1.127665
iter   12 value 1.125578
iter   13 value 1.123258
iter   14 value 1.119916
iter   15 value 1.118630
iter   16 value 1.117521
iter   17 value 1.117022
iter   18 value 1.116526
iter   19 value 1.115852
iter   20 value 1.115615
iter   21 value 1.115503
iter   22 value 1.115480
iter   23 value 1.115462
iter   24 value 1.115454
iter   25 value 1.115437
iter   26 value 1.115416
iter   27 value 1.115392
iter   28 value 1.115372
iter   29 value 1.115365
iter   30 value 1.115359
iter   31 value 1.115358
iter   32 value 1.115357
iter   33 value 1.115357
final  value 1.115357 
converged

Final gradient value:
 [1]  2.735709e-05 -1.855983e-04 -4.279453e-04  1.487570e-04  4.074807e-04
 [6]  9.226475e-05  2.421311e-04 -4.992265e-04 -3.540888e-04  8.592016e-05
[11] -6.022755e-05 -1.643077e-04 -4.512488e-04 -2.824748e-04  8.952181e-05
[16]  9.705732e-05  3.698695e-04  3.159595e-04

Warning in if (class(solve.hess) == "try-error") {: the condition has length > 1
and only the first element will be used


           =================================
              MEASURES OF FIT OF THE MODEL  
           ================================= 

-----------Sample discrepancy function value        : 1.115 

-----------Population discrepancy function value, Fo 
           Point estimate                           : 0.533
           Confidence Interval 90 %                 : ( 0.118 ; 1.198 ) 

-----------ROOT MEAN SQUARE ERROR OF APPROXIMATION 
           Steiger-Lind: RMSEA=sqrt(Fo/Df) 
           Point estimate                           : 0.172
           Confidence Interval 90 %                 : ( 0.081 ; 0.258 ) 

-----------Discrepancy function TEST 
           TEST STATISTIC                           : 34.58
           p values:
           Ho: perfect fit (RMSEA=0.00)             : 0.011
           Ho: close fit (RMSEA=0.050)              : 0.021

-----------Power estimation (alpha=0.05),
           N 32
           Degrees of freedom= 18
           Effective number of parameters= 18
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.01) : 0.071
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.06) : 0.062
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.08) : 0.099
       Ho (RMSEA=0.00) vs Alternative (RMSEA=0.05) : 0.082

-----------EXPECTED CROSS VALIDATION INDEX 
           Browne and Cudeck's Index BCI-(MODIFIED AIC) 
           Point estimate                          : 2.75
           Confidence Interval 90 %                : ( 2.335 ; 3.415 ) 

           Hoelter's CN( .05 )                     : 27

-----------Fit index
           Chisquare (null model) =  167.7914   Df =  28
           Bentler-Bonnett NFI                     : 0.794
           Tucker-Lewis NNFI                       : 0.816
           Bentler CFI                             : 0.881
           SRMR                                    : 0.142
           GFI                                     : 0.882
           AGFI                                    : 0.764
-----------Parsimony index
           Akaike Information Criterion            : -0.046
           Bozdogans's Consistent AIC              : -45.807
           Schwarz's Bayesian Criterion            : -0.897

----------------------------------------
 Parameter estimates and Standard Errors 
---------------------------------------- 
             Parameters Stand. Errors
eventful        0.00000       0.00000
vibrant        20.11733      10.02570
pleasant      284.41546      13.48214
calm          277.46578      13.66104
uneventful    178.16011      10.46988
monotonous    168.70395      10.55644
annoying      101.35477      13.44724
chaotic        66.01211      12.68769
a 0             0.03002       0.02244
a 2             0.00496       0.02011
v               0.39991       0.09631
z eventful      0.98147       0.12940
z vibrant       1.00202       0.13299
z pleasant      0.72220       0.09492
z calm          0.71712       0.09382
z uneventful    1.02137       0.13412
z monotonous    1.05391       0.13935
z annoying      0.74440       0.09820
z chaotic       0.80285       0.10763

---------------------------------------------------------------------------
 Estimates (ML) of POLAR ANGLES and COMMUNALITY INDICES
 (approximate, 95 % one at time confidence intervals)
 Note: variable names have been reordered to yield increasing polar angles
--------------------------------------------------------------------------- 
           ang. pos.    (L ;    U) 360-ang. pos.    (L ;    U) comm. ind.
eventful           0   ( 0 ;   0 )           360 ( 360 ; 360 )       0.85
vibrant           20   ( 0 ;  40 )           340 ( 360 ; 320 )       0.85
chaotic           66  ( 41 ;  91 )           294 ( 319 ; 269 )       0.85
annoying         101  ( 75 ; 128 )           259 ( 285 ; 232 )       0.85
monotonous       169 ( 148 ; 189 )           191 ( 212 ; 171 )       0.85
uneventful       178 ( 158 ; 199 )           182 ( 202 ; 161 )       0.85
calm             277 ( 251 ; 304 )            83 ( 109 ;  56 )       0.85
pleasant         284 ( 258 ; 311 )            76 ( 102 ;  49 )       0.85
               (L ;     U)
eventful   ( 0.78 ; 0.89 )
vibrant    ( 0.78 ; 0.89 )
chaotic    ( 0.78 ; 0.89 )
annoying   ( 0.78 ; 0.89 )
monotonous ( 0.78 ; 0.89 )
uneventful ( 0.78 ; 0.89 )
calm       ( 0.78 ; 0.89 )
pleasant   ( 0.78 ; 0.89 )


 (MCSC) Correlation at 180 degrees: -0.932 
----------------------------------------------------
                      b 0    b 1    b 2
Estimates of Betas: 0.029 0.9662 0.0048
----------------------------------------------------
 CPU Time for optimization 0.092 sec. ( 0 min.)
circE.ARAUS.ec=CircE.BFGS(data.araus.cor,
                 v.names = rownames(data.araus.cor),
                 m=2,N=29,r=1,equal.com = TRUE)
Date: Wed Jul  5 14:09:42 2023 
Data: Circumplex Estimation 
Model:Equal radius 
Reference variable at 0 degree: eventful 

    -------------------------------
          Initial parameters:      
    -------------------------------
              parameter initial gradient upper lower
vibrant      5.79194185      -0.03778402   Inf  -Inf
pleasant     4.48269171      -0.02565814   Inf  -Inf
calm         4.28559422      -0.06563248   Inf  -Inf
uneventful   3.06502168       0.09989432   Inf  -Inf
monotonous   2.82071606      -0.03365129   Inf  -Inf
annoying     1.29014691      -0.05590764   Inf  -Inf
chaotic      0.75010314       0.02461958   Inf  -Inf
a 0          0.02324581       2.03978744   Inf     0
a 2          0.00000000       7.27236709   Inf     0
v            0.42022930       4.12855388   Inf     0
z eventful   0.85852186      -0.17985038   Inf     0
z vibrant    0.75390659       1.59416426   Inf     0
z pleasant   0.84833960      -0.10918673   Inf     0
z calm       0.87605968      -0.46047276   Inf     0
z uneventful 0.86139274      -0.26303844   Inf     0
z monotonous 0.72262722       2.60552903   Inf     0
z annoying   0.81972945       0.32387486   Inf     0
z chaotic    0.77090119       1.48600660   Inf     0
                               
                               
   Constrained (L-BFGS-B) Optimization

Warning in optim(start, func, gr = gradient, control = control, method =
"L-BFGS-B", : method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and
'abstol'

iter    1 value 0.651049
iter    2 value 0.591471
iter    3 value 0.452531
iter    4 value 0.391408
iter    5 value 0.378908
iter    6 value 0.377298
iter    7 value 0.371811
iter    8 value 0.370499
iter    9 value 0.368686
iter   10 value 0.367247
iter   11 value 0.366313
iter   12 value 0.366067
iter   13 value 0.365772
iter   14 value 0.365698
iter   15 value 0.365628
iter   16 value 0.365587
iter   17 value 0.365552
iter   18 value 0.365547
iter   19 value 0.365544
iter   20 value 0.365540
iter   21 value 0.365535
iter   22 value 0.365533
iter   23 value 0.365532
iter   24 value 0.365531
iter   25 value 0.365531
final  value 0.365531 
converged

Final gradient value:
 [1] -4.785170e-04  8.146098e-05 -1.813690e-04 -5.310683e-04  6.217731e-05
 [6] -4.016674e-04  1.399656e-04  3.701446e-04 -6.823869e-04 -2.189871e-04
[11]  3.437098e-05 -4.017966e-04 -4.327329e-04 -2.829208e-04 -2.996181e-04
[16] -4.728641e-04 -4.323903e-04 -3.664561e-04

Warning in if (class(solve.hess) == "try-error") {: the condition has length > 1
and only the first element will be used


           =================================
              MEASURES OF FIT OF THE MODEL  
           ================================= 

-----------Sample discrepancy function value        : 0.366 

-----------Population discrepancy function value, Fo 
           Point estimate                           : 0
           Confidence Interval 90 %                 : ( 0 ; 0.056 ) 

-----------ROOT MEAN SQUARE ERROR OF APPROXIMATION 
           Steiger-Lind: RMSEA=sqrt(Fo/Df) 
           Point estimate                           : 0
           Confidence Interval 90 %                 : ( 0 ; 0.056 ) 

-----------Discrepancy function TEST 
           TEST STATISTIC                           : 10.23
           p values:
           Ho: perfect fit (RMSEA=0.00)             : 0.924
           Ho: close fit (RMSEA=0.050)              : 0.946

-----------Power estimation (alpha=0.05),
           N 29
           Degrees of freedom= 18
           Effective number of parameters= 18
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.01) : 0.069
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.06) : 0.061
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.08) : 0.094
       Ho (RMSEA=0.00) vs Alternative (RMSEA=0.05) : 0.079

-----------EXPECTED CROSS VALIDATION INDEX 
           Browne and Cudeck's Index BCI-(MODIFIED AIC) 
           Point estimate                          : 2.538
           Confidence Interval 90 %                : ( 2.538 ; 2.594 ) 

           Hoelter's CN( .05 )                     : 79

-----------Fit index
           Chisquare (null model) =  120.3928   Df =  28
           Bentler-Bonnett NFI                     : 0.915
           Tucker-Lewis NNFI                       : 1.131
           Bentler CFI                             : 1
           SRMR                                    : 0.056
           GFI                                     : 1
           AGFI                                    : 1
-----------Parsimony index
           Akaike Information Criterion            : -0.92
           Bozdogans's Consistent AIC              : -68.376
           Schwarz's Bayesian Criterion            : -1.799

----------------------------------------
 Parameter estimates and Standard Errors 
---------------------------------------- 
             Parameters Stand. Errors
eventful        0.00000       0.00000
vibrant       333.83646      12.20386
pleasant      256.91241      15.28679
calm          244.19154      15.04829
uneventful    176.01425      12.42072
monotonous    163.25003      12.58379
annoying       73.53133      15.15901
chaotic        38.65851      13.41384
a 0             0.01711       0.02388
a 2             0.01236       0.02805
v               0.51005       0.13613
z eventful      0.82957       0.12191
z vibrant       0.84265       0.12138
z pleasant      0.77734       0.11139
z calm          0.77416       0.11201
z uneventful    0.82870       0.12089
z monotonous    0.86924       0.12526
z annoying      0.78812       0.11309
z chaotic       0.83921       0.12521

---------------------------------------------------------------------------
 Estimates (ML) of POLAR ANGLES and COMMUNALITY INDICES
 (approximate, 95 % one at time confidence intervals)
 Note: variable names have been reordered to yield increasing polar angles
--------------------------------------------------------------------------- 
           ang. pos.    (L ;    U) 360-ang. pos.    (L ;    U) comm. ind.
eventful           0   ( 0 ;   0 )           360 ( 360 ; 360 )       0.81
chaotic           39  ( 12 ;  65 )           321 ( 348 ; 295 )       0.81
annoying          74  ( 44 ; 103 )           286 ( 316 ; 257 )       0.81
monotonous       163 ( 139 ; 188 )           197 ( 221 ; 172 )       0.81
uneventful       176 ( 152 ; 200 )           184 ( 208 ; 160 )       0.81
calm             244 ( 215 ; 274 )           116 ( 145 ;  86 )       0.81
pleasant         257 ( 227 ; 287 )           103 ( 133 ;  73 )       0.81
vibrant          334 ( 310 ; 358 )            26  ( 50 ;   2 )       0.81
               (L ;     U)
eventful   ( 0.73 ; 0.88 )
chaotic    ( 0.73 ; 0.88 )
annoying   ( 0.73 ; 0.88 )
monotonous ( 0.73 ; 0.88 )
uneventful ( 0.73 ; 0.88 )
calm       ( 0.73 ; 0.88 )
pleasant   ( 0.73 ; 0.88 )
vibrant    ( 0.73 ; 0.88 )


 (MCSC) Correlation at 180 degrees: -0.943 
----------------------------------------------------
                       b 0    b 1   b 2
Estimates of Betas: 0.0166 0.9714 0.012
----------------------------------------------------
 CPU Time for optimization 0.071 sec. ( 0 min.)
#equal comm and angles
circE.MYM.eca=CircE.BFGS(data.merged.mym.cor,
                 v.names = rownames(data.merged.mym.cor),
                 m=2,N=n.participsnts.MY.M,r=1,
                 equal.com = TRUE, equal.ang = TRUE)
Date: Wed Jul  5 14:09:43 2023 
Data: Circumplex Estimation 
Model:Constrained model: equal spacing and equal radius 
Reference variable at 0 degree: eventful 

    -------------------------------
          Initial parameters:      
    -------------------------------
             parameter initial gradient upper lower
a 0          0.0380179       6.47757774   Inf     0
a 2          0.0000000      19.91704320   Inf     0
v            0.3975896      12.91521018   Inf     0
z eventful   0.8043718       0.98182454   Inf     0
z vibrant    0.8152370       3.73982800   Inf     0
z pleasant   0.9492864       0.00076239   Inf     0
z calm       0.9437553      -0.28855010   Inf     0
z uneventful 0.7314296       3.35432549   Inf     0
z monotonous 0.6498327       7.04880697   Inf     0
z annoying   0.8489066       0.28466980   Inf     0
z chaotic    0.8798776      -0.72451629   Inf     0
                               
                               
   Constrained (L-BFGS-B) Optimization

Warning in optim(start, func, gr = gradient, control = control, method =
"L-BFGS-B", : method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and
'abstol'

iter    1 value 4.839705
iter    2 value 4.542925
iter    3 value 3.908782
iter    4 value 3.820228
iter    5 value 3.726939
iter    6 value 3.516048
iter    7 value 3.233424
iter    8 value 2.954967
iter    9 value 2.928560
iter   10 value 2.850696
iter   11 value 2.827487
iter   12 value 2.825768
iter   13 value 2.823537
iter   14 value 2.823156
iter   15 value 2.822877
iter   16 value 2.822571
iter   17 value 2.822156
iter   18 value 2.822098
iter   19 value 2.822007
iter   20 value 2.822002
iter   21 value 2.822001
final  value 2.822001 
converged

Final gradient value:
 [1] -1.033276e-03 -4.278267e-01 -1.675007e-04 -1.481130e-04 -2.774895e-05
 [6] -3.980268e-04 -2.507781e-04  2.060698e-05 -2.782864e-05 -4.760241e-06
[11]  4.830054e-04

Warning in if (class(solve.hess) == "try-error") {: the condition has length > 1
and only the first element will be used


           =================================
              MEASURES OF FIT OF THE MODEL  
           ================================= 

 NOTE: ONE PARAMETER ( a 2 ) IS ON A BOUNDARY.

-----------Model degrees of freedom= 25 
           Active Bound= 1 
           The appropriate distribution for the test statistic lies between 
           chi-squared distribution with 25 and with 25 + 1 degrees of freedom.

-----------Values enclosed in square brackets are based on 25 + 1 = 26 degrees of freedom.

-----------Sample discrepancy function value        : 2.822 

-----------Population discrepancy function value, Fo 
           Point estimate                           : 1.988 [ 1.952 ]
           Confidence Interval 90 %                 : ( 1.177 [ 1.147 ] ; 3.045 [ 3.006 ] ) 

-----------ROOT MEAN SQUARE ERROR OF APPROXIMATION 
           Steiger-Lind: RMSEA=sqrt(Fo/Df) 
           Point estimate                           : 0.282 [ 0.274 ]
           Confidence Interval 90 %                 : ( 0.217 [ 0.21 ] ; 0.349 [ 0.34 ] ) 

-----------Discrepancy function TEST 
           TEST STATISTIC                           : 84.66
           p values:
           Ho: perfect fit (RMSEA=0.00)             : 0 [ 0 ]
           Ho: close fit (RMSEA=0.050)              : 0 [ 0 ]

-----------Power estimation (alpha=0.05),
           N 31
           Degrees of freedom= 25 [ 26 ]
           Effective number of parameters= 11
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.01) : 0.076 [ 0.077 ]
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.06) : 0.064 [ 0.064 ]
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.08) : 0.107 [ 0.108 ]
       Ho (RMSEA=0.00) vs Alternative (RMSEA=0.05) : 0.087 [ 0.088 ]

-----------EXPECTED CROSS VALIDATION INDEX 
           Browne and Cudeck's Index BCI-(MODIFIED AIC) 
           Point estimate                          : 3.869 [ 3.866 ]
           Confidence Interval 90 %                : ( 3.058 [ 3.061 ] ; 4.926 [ 4.92 ] ) 

           Hoelter's CN( .05 )                     : 14 [ 15 ]

-----------Fit index
           Chisquare (null model) =  158.6338   Df =  28
           Bentler-Bonnett NFI                     : 0.466
           Tucker-Lewis NNFI                       : 0.488 [ 0.516 ]
           Bentler CFI                             : 0.543 [ 0.543 ]
           SRMR                                    : 0.307
           GFI                                     : 0.668 [ 0.672 ]
           AGFI                                    : 0.522 [ 0.546 ]
-----------Parsimony index
           Akaike Information Criterion            : 2.089
           Bozdogans's Consistent AIC              : 35.886
           Schwarz's Bayesian Criterion            : 1.563

----------------------------------------
 Parameter estimates and Standard Errors 
---------------------------------------- 
             Parameters Stand. Errors
eventful        0.00000       0.00000
vibrant        45.00000       0.00000
pleasant       90.00000       0.00000
calm          135.00000       0.00000
uneventful    180.00000       0.00000
monotonous    225.00000       0.00000
annoying      270.00000       0.00000
chaotic       315.00000       0.00000
a 0             0.03295       0.03819
a 2             0.00000       0.04811
v               0.80345       0.24769
z eventful      0.75184       0.11420
z vibrant       0.96537       0.14663
z pleasant      0.70544       0.10715
z calm          0.68272       0.10370
z uneventful    0.79273       0.12041
z monotonous    0.82303       0.12501
z annoying      0.69639       0.10578
z chaotic       0.65923       0.10013

 NOTE! ACTIVE BOUNDS FOR:  a 2 ; 

---------------------------------------------------------------------------
 Estimates (ML) of POLAR ANGLES and COMMUNALITY INDICES
 (approximate, 95 % one at time confidence intervals)
 Note: variable names have been reordered to yield increasing polar angles
--------------------------------------------------------------------------- 
           ang. pos.    (L ;    U) 360-ang. pos.    (L ;    U) comm. ind.
eventful           0   ( 0 ;   0 )           360 ( 360 ; 360 )       0.74
vibrant           45  ( 45 ;  45 )           315 ( 315 ; 315 )       0.74
pleasant          90  ( 90 ;  90 )           270 ( 270 ; 270 )       0.74
calm             135 ( 135 ; 135 )           225 ( 225 ; 225 )       0.74
uneventful       180 ( 180 ; 180 )           180 ( 180 ; 180 )       0.74
monotonous       225 ( 225 ; 225 )           135 ( 135 ; 135 )       0.74
annoying         270 ( 270 ; 270 )            90  ( 90 ;  90 )       0.74
chaotic          315 ( 315 ; 315 )            45  ( 45 ;  45 )       0.74
               (L ;     U)
eventful   ( 0.64 ; 0.83 )
vibrant    ( 0.64 ; 0.83 )
pleasant   ( 0.64 ; 0.83 )
calm       ( 0.64 ; 0.83 )
uneventful ( 0.64 ; 0.83 )
monotonous ( 0.64 ; 0.83 )
annoying   ( 0.64 ; 0.83 )
chaotic    ( 0.64 ; 0.83 )


 (MCSC) Correlation at 180 degrees: -0.936 
----------------------------------------------------
                       b 0    b 1 b 2
Estimates of Betas: 0.0319 0.9681   0
----------------------------------------------------
 CPU Time for optimization 0.04 sec. ( 0 min.)
circE.MYO.eca=CircE.BFGS(data.merged.myo.cor,
                 v.names = rownames(data.merged.myo.cor),
                 m=2,N=n.participsnts.MY.O,r=1,
                 equal.com = TRUE, equal.ang = TRUE)
Date: Wed Jul  5 14:09:43 2023 
Data: Circumplex Estimation 
Model:Constrained model: equal spacing and equal radius 
Reference variable at 0 degree: eventful 

    -------------------------------
          Initial parameters:      
    -------------------------------
              parameter initial gradient upper lower
a 0          0.06620263        3.0126583   Inf     0
a 2          0.00000000       12.0150869   Inf     0
v            0.48519553        9.9336890   Inf     0
z eventful   0.84830360        0.3032792   Inf     0
z vibrant    0.55540045       12.0536465   Inf     0
z pleasant   0.93277567       -0.5893785   Inf     0
z calm       0.92706956       -0.1744871   Inf     0
z uneventful 0.84258910        0.6844968   Inf     0
z monotonous 0.65966327        4.2473017   Inf     0
z annoying   0.82359756       -0.1332314   Inf     0
z chaotic    0.81023595        0.2032359   Inf     0
                               
                               
   Constrained (L-BFGS-B) Optimization

Warning in optim(start, func, gr = gradient, control = control, method =
"L-BFGS-B", : method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and
'abstol'

iter    1 value 4.129872
iter    2 value 3.734176
iter    3 value 2.986475
iter    4 value 2.833485
iter    5 value 2.567885
iter    6 value 2.406389
iter    7 value 2.259527
iter    8 value 2.201461
iter    9 value 2.184733
iter   10 value 2.181120
iter   11 value 2.180278
iter   12 value 2.179882
iter   13 value 2.179224
iter   14 value 2.178266
iter   15 value 2.177511
iter   16 value 2.177282
iter   17 value 2.177090
iter   18 value 2.177087
iter   19 value 2.177087
final  value 2.177087 
converged

Final gradient value:
 [1] -1.521449e-04 -1.241919e+00 -5.060692e-06  1.152732e-05 -3.178090e-05
 [6]  4.534782e-05 -8.255902e-05  1.212589e-05 -6.699832e-05  1.004015e-04
[11]  4.583678e-05

Warning in if (class(solve.hess) == "try-error") {: the condition has length > 1
and only the first element will be used


           =================================
              MEASURES OF FIT OF THE MODEL  
           ================================= 

 NOTE: ONE PARAMETER ( a 2 ) IS ON A BOUNDARY.

-----------Model degrees of freedom= 25 
           Active Bound= 1 
           The appropriate distribution for the test statistic lies between 
           chi-squared distribution with 25 and with 25 + 1 degrees of freedom.

-----------Values enclosed in square brackets are based on 25 + 1 = 26 degrees of freedom.

-----------Sample discrepancy function value        : 2.177 

-----------Population discrepancy function value, Fo 
           Point estimate                           : 1.369 [ 1.34 ]
           Confidence Interval 90 %                 : ( 0.706 [ 0.674 ] ; 2.28 [ 2.247 ] ) 

-----------ROOT MEAN SQUARE ERROR OF APPROXIMATION 
           Steiger-Lind: RMSEA=sqrt(Fo/Df) 
           Point estimate                           : 0.234 [ 0.227 ]
           Confidence Interval 90 %                 : ( 0.168 [ 0.161 ] ; 0.302 [ 0.294 ] ) 

-----------Discrepancy function TEST 
           TEST STATISTIC                           : 67.49
           p values:
           Ho: perfect fit (RMSEA=0.00)             : 0 [ 0 ]
           Ho: close fit (RMSEA=0.050)              : 0 [ 0 ]

-----------Power estimation (alpha=0.05),
           N 32
           Degrees of freedom= 25 [ 26 ]
           Effective number of parameters= 11
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.01) : 0.077 [ 0.078 ]
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.06) : 0.064 [ 0.064 ]
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.08) : 0.109 [ 0.111 ]
       Ho (RMSEA=0.00) vs Alternative (RMSEA=0.05) : 0.089 [ 0.09 ]

-----------EXPECTED CROSS VALIDATION INDEX 
           Browne and Cudeck's Index BCI-(MODIFIED AIC) 
           Point estimate                          : 3.175 [ 3.178 ]
           Confidence Interval 90 %                : ( 2.512 [ 2.513 ] ; 4.087 [ 4.086 ] ) 

           Hoelter's CN( .05 )                     : 18 [ 19 ]

-----------Fit index
           Chisquare (null model) =  137.1038   Df =  28
           Bentler-Bonnett NFI                     : 0.508
           Tucker-Lewis NNFI                       : 0.564 [ 0.59 ]
           Bentler CFI                             : 0.611 [ 0.611 ]
           SRMR                                    : 0.237
           GFI                                     : 0.745 [ 0.749 ]
           AGFI                                    : 0.633 [ 0.652 ]
-----------Parsimony index
           Akaike Information Criterion            : 1.467
           Bozdogans's Consistent AIC              : 18.367
           Schwarz's Bayesian Criterion            : 0.947

----------------------------------------
 Parameter estimates and Standard Errors 
---------------------------------------- 
             Parameters Stand. Errors
eventful        0.00000       0.00000
vibrant        45.00000       0.00000
pleasant       90.00000       0.00000
calm          135.00000       0.00000
uneventful    180.00000       0.00000
monotonous    225.00000       0.00000
annoying      270.00000       0.00000
chaotic       315.00000       0.00000
a 0             0.04038       0.04319
a 2             0.00000       0.05339
v               0.89938       0.28127
z eventful      0.75853       0.11639
z vibrant       0.87011       0.13351
z pleasant      0.66719       0.10238
z calm          0.69206       0.10619
z uneventful    0.76992       0.11814
z monotonous    0.75557       0.11594
z annoying      0.67007       0.10282
z chaotic       0.68422       0.10499

 NOTE! ACTIVE BOUNDS FOR:  a 2 ; 

---------------------------------------------------------------------------
 Estimates (ML) of POLAR ANGLES and COMMUNALITY INDICES
 (approximate, 95 % one at time confidence intervals)
 Note: variable names have been reordered to yield increasing polar angles
--------------------------------------------------------------------------- 
           ang. pos.    (L ;    U) 360-ang. pos.    (L ;    U) comm. ind.
eventful           0   ( 0 ;   0 )           360 ( 360 ; 360 )       0.73
vibrant           45  ( 45 ;  45 )           315 ( 315 ; 315 )       0.73
pleasant          90  ( 90 ;  90 )           270 ( 270 ; 270 )       0.73
calm             135 ( 135 ; 135 )           225 ( 225 ; 225 )       0.73
uneventful       180 ( 180 ; 180 )           180 ( 180 ; 180 )       0.73
monotonous       225 ( 225 ; 225 )           135 ( 135 ; 135 )       0.73
annoying         270 ( 270 ; 270 )            90  ( 90 ;  90 )       0.73
chaotic          315 ( 315 ; 315 )            45  ( 45 ;  45 )       0.73
               (L ;     U)
eventful   ( 0.61 ; 0.82 )
vibrant    ( 0.61 ; 0.82 )
pleasant   ( 0.61 ; 0.82 )
calm       ( 0.61 ; 0.82 )
uneventful ( 0.61 ; 0.82 )
monotonous ( 0.61 ; 0.82 )
annoying   ( 0.61 ; 0.82 )
chaotic    ( 0.61 ; 0.82 )


 (MCSC) Correlation at 180 degrees: -0.922 
----------------------------------------------------
                       b 0    b 1 b 2
Estimates of Betas: 0.0388 0.9612   0
----------------------------------------------------
 CPU Time for optimization 0.043 sec. ( 0 min.)
circE.SG.eca=CircE.BFGS(data.merged.sg.cor,
                 v.names = rownames(data.merged.sg.cor),
                 m=2,N=n.participsnts.SG,r=1,
                 equal.com = TRUE, equal.ang = TRUE)
Date: Wed Jul  5 14:09:43 2023 
Data: Circumplex Estimation 
Model:Constrained model: equal spacing and equal radius 
Reference variable at 0 degree: eventful 

    -------------------------------
          Initial parameters:      
    -------------------------------
              parameter initial gradient upper lower
a 0          0.02019079       8.74210684   Inf     0
a 2          0.00000000      14.26854247   Inf     0
v            0.43312236      14.15376207   Inf     0
z eventful   0.86361738       0.58671432   Inf     0
z vibrant    0.70536260       5.02472538   Inf     0
z pleasant   0.94834443      -0.61228695   Inf     0
z calm       0.95084737       0.01004503   Inf     0
z uneventful 0.83582880       1.29933341   Inf     0
z monotonous 0.52936793      14.31751745   Inf     0
z annoying   0.89007942      -0.35504008   Inf     0
z chaotic    0.86217789       0.36270651   Inf     0
                               
                               
   Constrained (L-BFGS-B) Optimization

Warning in optim(start, func, gr = gradient, control = control, method =
"L-BFGS-B", : method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and
'abstol'

iter    1 value 5.435375
iter    2 value 5.127681
iter    3 value 4.197944
iter    4 value 4.024816
iter    5 value 3.510134
iter    6 value 3.225267
iter    7 value 3.159678
iter    8 value 3.143066
iter    9 value 3.134551
iter   10 value 3.131966
iter   11 value 3.131281
iter   12 value 3.129796
iter   13 value 3.128077
iter   14 value 3.126971
iter   15 value 3.126462
iter   16 value 3.126255
iter   17 value 3.126251
iter   18 value 3.126251
final  value 3.126251 
converged

Final gradient value:
 [1]  2.877091e-04 -2.285724e+00  7.336036e-05  3.170134e-04  5.121337e-04
 [6] -5.987061e-04  2.230693e-06  3.121737e-04 -1.938469e-04 -1.310940e-04
[11] -4.892957e-04

Warning in if (class(solve.hess) == "try-error") {: the condition has length > 1
and only the first element will be used


           =================================
              MEASURES OF FIT OF THE MODEL  
           ================================= 

 NOTE: ONE PARAMETER ( a 2 ) IS ON A BOUNDARY.

-----------Model degrees of freedom= 25 
           Active Bound= 1 
           The appropriate distribution for the test statistic lies between 
           chi-squared distribution with 25 and with 25 + 1 degrees of freedom.

-----------Values enclosed in square brackets are based on 25 + 1 = 26 degrees of freedom.

-----------Sample discrepancy function value        : 3.126 

-----------Population discrepancy function value, Fo 
           Point estimate                           : 2.326 [ 2.293 ]
           Confidence Interval 90 %                 : ( 1.464 [ 1.436 ] ; 3.422 [ 3.388 ] ) 

-----------ROOT MEAN SQUARE ERROR OF APPROXIMATION 
           Steiger-Lind: RMSEA=sqrt(Fo/Df) 
           Point estimate                           : 0.305 [ 0.297 ]
           Confidence Interval 90 %                 : ( 0.242 [ 0.235 ] ; 0.37 [ 0.361 ] ) 

-----------Discrepancy function TEST 
           TEST STATISTIC                           : 96.91
           p values:
           Ho: perfect fit (RMSEA=0.00)             : 0 [ 0 ]
           Ho: close fit (RMSEA=0.050)              : 0 [ 0 ]

-----------Power estimation (alpha=0.05),
           N 32
           Degrees of freedom= 25 [ 26 ]
           Effective number of parameters= 11
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.01) : 0.077 [ 0.078 ]
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.06) : 0.064 [ 0.064 ]
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.08) : 0.109 [ 0.111 ]
       Ho (RMSEA=0.00) vs Alternative (RMSEA=0.05) : 0.089 [ 0.09 ]

-----------EXPECTED CROSS VALIDATION INDEX 
           Browne and Cudeck's Index BCI-(MODIFIED AIC) 
           Point estimate                          : 4.132 [ 4.132 ]
           Confidence Interval 90 %                : ( 3.271 [ 3.275 ] ; 5.229 [ 5.227 ] ) 

           Hoelter's CN( .05 )                     : 13 [ 13 ]

-----------Fit index
           Chisquare (null model) =  167.7914   Df =  28
           Bentler-Bonnett NFI                     : 0.422
           Tucker-Lewis NNFI                       : 0.424 [ 0.454 ]
           Bentler CFI                             : 0.486 [ 0.486 ]
           SRMR                                    : 0.269
           GFI                                     : 0.632 [ 0.636 ]
           AGFI                                    : 0.47 [ 0.496 ]
-----------Parsimony index
           Akaike Information Criterion            : 2.417
           Bozdogans's Consistent AIC              : 47.791
           Schwarz's Bayesian Criterion            : 1.896

----------------------------------------
 Parameter estimates and Standard Errors 
---------------------------------------- 
             Parameters Stand. Errors
eventful        0.00000       0.00000
vibrant        45.00000       0.00000
pleasant       90.00000       0.00000
calm          135.00000       0.00000
uneventful    180.00000       0.00000
monotonous    225.00000       0.00000
annoying      270.00000       0.00000
chaotic       315.00000       0.00000
a 0             0.00284       0.03548
a 2             0.00000       0.05518
v               0.96448       0.31134
z eventful      0.75188       0.11818
z vibrant       0.83301       0.13093
z pleasant      0.64904       0.10202
z calm          0.68026       0.10692
z uneventful    0.76670       0.12051
z monotonous    0.75296       0.11835
z annoying      0.65442       0.10286
z chaotic       0.67878       0.10669

 NOTE! ACTIVE BOUNDS FOR:  a 2 ; 

---------------------------------------------------------------------------
 Estimates (ML) of POLAR ANGLES and COMMUNALITY INDICES
 (approximate, 95 % one at time confidence intervals)
 Note: variable names have been reordered to yield increasing polar angles
--------------------------------------------------------------------------- 
           ang. pos.    (L ;    U) 360-ang. pos.    (L ;    U) comm. ind.    (L
eventful           0   ( 0 ;   0 )           360 ( 360 ; 360 )       0.71 ( 0.6
vibrant           45  ( 45 ;  45 )           315 ( 315 ; 315 )       0.71 ( 0.6
pleasant          90  ( 90 ;  90 )           270 ( 270 ; 270 )       0.71 ( 0.6
calm             135 ( 135 ; 135 )           225 ( 225 ; 225 )       0.71 ( 0.6
uneventful       180 ( 180 ; 180 )           180 ( 180 ; 180 )       0.71 ( 0.6
monotonous       225 ( 225 ; 225 )           135 ( 135 ; 135 )       0.71 ( 0.6
annoying         270 ( 270 ; 270 )            90  ( 90 ;  90 )       0.71 ( 0.6
chaotic          315 ( 315 ; 315 )            45  ( 45 ;  45 )       0.71 ( 0.6
           ;     U)
eventful   ; 0.81 )
vibrant    ; 0.81 )
pleasant   ; 0.81 )
calm       ; 0.81 )
uneventful ; 0.81 )
monotonous ; 0.81 )
annoying   ; 0.81 )
chaotic    ; 0.81 )


 (MCSC) Correlation at 180 degrees: -0.994 
----------------------------------------------------
                       b 0    b 1 b 2
Estimates of Betas: 0.0028 0.9972   0
----------------------------------------------------
 CPU Time for optimization 0.035 sec. ( 0 min.)
circE.ARAUS.eca=CircE.BFGS(data.araus.cor,
                 v.names = rownames(data.araus.cor),
                 m=2,N=29,r=1,
                 equal.com = TRUE, equal.ang = TRUE)
Date: Wed Jul  5 14:09:43 2023 
Data: Circumplex Estimation 
Model:Constrained model: equal spacing and equal radius 
Reference variable at 0 degree: eventful 

    -------------------------------
          Initial parameters:      
    -------------------------------
              parameter initial gradient upper lower
a 0          0.02324581        2.5342743   Inf     0
a 2          0.00000000        5.3912856   Inf     0
v            0.42022930        6.5822046   Inf     0
z eventful   0.85852186       -0.3983879   Inf     0
z vibrant    0.75390659        2.0654519   Inf     0
z pleasant   0.84833960        0.4120611   Inf     0
z calm       0.87605968       -0.2688604   Inf     0
z uneventful 0.86139274       -0.2472112   Inf     0
z monotonous 0.72262722        3.4936352   Inf     0
z annoying   0.81972945        1.0714546   Inf     0
z chaotic    0.77090119        1.2792824   Inf     0
                               
                               
   Constrained (L-BFGS-B) Optimization

Warning in optim(start, func, gr = gradient, control = control, method =
"L-BFGS-B", : method L-BFGS-B uses 'factr' (and 'pgtol') instead of 'reltol' and
'abstol'

iter    1 value 1.663087
iter    2 value 1.137575
iter    3 value 1.093136
iter    4 value 1.060498
iter    5 value 1.036472
iter    6 value 1.022176
iter    7 value 1.019157
iter    8 value 1.016335
iter    9 value 1.015118
iter   10 value 1.013639
iter   11 value 1.011605
iter   12 value 1.009519
iter   13 value 1.009014
iter   14 value 1.008563
iter   15 value 1.008548
iter   16 value 1.008547
iter   17 value 1.008547
final  value 1.008547 
converged

Final gradient value:
 [1]  1.135584e-05 -1.832449e+00  6.213118e-05  1.299697e-04  1.589948e-05
 [6] -1.980959e-05 -3.713392e-05  3.151902e-05  1.137010e-04 -1.363710e-04
[11] -2.244845e-05

Warning in if (class(solve.hess) == "try-error") {: the condition has length > 1
and only the first element will be used


           =================================
              MEASURES OF FIT OF THE MODEL  
           ================================= 

 NOTE: ONE PARAMETER ( a 2 ) IS ON A BOUNDARY.

-----------Model degrees of freedom= 25 
           Active Bound= 1 
           The appropriate distribution for the test statistic lies between 
           chi-squared distribution with 25 and with 25 + 1 degrees of freedom.

-----------Values enclosed in square brackets are based on 25 + 1 = 26 degrees of freedom.

-----------Sample discrepancy function value        : 1.009 

-----------Population discrepancy function value, Fo 
           Point estimate                           : 0.116 [ 0.079 ]
           Confidence Interval 90 %                 : ( 0 [ 0 ] ; 0.731 [ 0.691 ] ) 

-----------ROOT MEAN SQUARE ERROR OF APPROXIMATION 
           Steiger-Lind: RMSEA=sqrt(Fo/Df) 
           Point estimate                           : 0.068 [ 0.055 ]
           Confidence Interval 90 %                 : ( 0 [ 0 ] ; 0.171 [ 0.163 ] ) 

-----------Discrepancy function TEST 
           TEST STATISTIC                           : 28.24
           p values:
           Ho: perfect fit (RMSEA=0.00)             : 0.297 [ 0.347 ]
           Ho: close fit (RMSEA=0.050)              : 0.387 [ 0.442 ]

-----------Power estimation (alpha=0.05),
           N 29
           Degrees of freedom= 25 [ 26 ]
           Effective number of parameters= 11
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.01) : 0.074 [ 0.075 ]
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.06) : 0.063 [ 0.063 ]
       Ho (RMSEA=0.05) vs Alternative (RMSEA=0.08) : 0.103 [ 0.104 ]
       Ho (RMSEA=0.00) vs Alternative (RMSEA=0.05) : 0.084 [ 0.085 ]

-----------EXPECTED CROSS VALIDATION INDEX 
           Browne and Cudeck's Index BCI-(MODIFIED AIC) 
           Point estimate                          : 2.166 [ 2.165 ]
           Confidence Interval 90 %                : ( 2.051 [ 2.086 ] ; 2.782 [ 2.777 ] ) 

           Hoelter's CN( .05 )                     : 38 [ 39 ]

-----------Fit index
           Chisquare (null model) =  120.3928   Df =  28
           Bentler-Bonnett NFI                     : 0.765
           Tucker-Lewis NNFI                       : 0.961 [ 0.974 ]
           Bentler CFI                             : 0.965 [ 0.965 ]
           SRMR                                    : 0.168
           GFI                                     : 0.972 [ 0.981 ]
           AGFI                                    : 0.96 [ 0.974 ]
-----------Parsimony index
           Akaike Information Criterion            : 0.223
           Bozdogans's Consistent AIC              : -19.801
           Schwarz's Bayesian Criterion            : -0.314

----------------------------------------
 Parameter estimates and Standard Errors 
---------------------------------------- 
             Parameters Stand. Errors
eventful        0.00000       0.00000
vibrant        45.00000       0.00000
pleasant       90.00000       0.00000
calm          135.00000       0.00000
uneventful    180.00000       0.00000
monotonous    225.00000       0.00000
annoying      270.00000       0.00000
chaotic       315.00000       0.00000
a 0             0.01242       0.02845
a 2             0.00000       0.04046
v               0.66678       0.20409
z eventful      0.73567       0.11118
z vibrant       0.80781       0.12208
z pleasant      0.78297       0.11832
z calm          0.74739       0.11295
z uneventful    0.74414       0.11246
z monotonous    0.84160       0.12718
z annoying      0.79649       0.12037
z chaotic       0.75841       0.11461

 NOTE! ACTIVE BOUNDS FOR:  a 2 ; 

---------------------------------------------------------------------------
 Estimates (ML) of POLAR ANGLES and COMMUNALITY INDICES
 (approximate, 95 % one at time confidence intervals)
 Note: variable names have been reordered to yield increasing polar angles
--------------------------------------------------------------------------- 
           ang. pos.    (L ;    U) 360-ang. pos.    (L ;    U) comm. ind.
eventful           0   ( 0 ;   0 )           360 ( 360 ; 360 )       0.77
vibrant           45  ( 45 ;  45 )           315 ( 315 ; 315 )       0.77
pleasant          90  ( 90 ;  90 )           270 ( 270 ; 270 )       0.77
calm             135 ( 135 ; 135 )           225 ( 225 ; 225 )       0.77
uneventful       180 ( 180 ; 180 )           180 ( 180 ; 180 )       0.77
monotonous       225 ( 225 ; 225 )           135 ( 135 ; 135 )       0.77
annoying         270 ( 270 ; 270 )            90  ( 90 ;  90 )       0.77
chaotic          315 ( 315 ; 315 )            45  ( 45 ;  45 )       0.77
               (L ;     U)
eventful   ( 0.67 ; 0.86 )
vibrant    ( 0.67 ; 0.86 )
pleasant   ( 0.67 ; 0.86 )
calm       ( 0.67 ; 0.86 )
uneventful ( 0.67 ; 0.86 )
monotonous ( 0.67 ; 0.86 )
annoying   ( 0.67 ; 0.86 )
chaotic    ( 0.67 ; 0.86 )


 (MCSC) Correlation at 180 degrees: -0.975 
----------------------------------------------------
                       b 0    b 1 b 2
Estimates of Betas: 0.0123 0.9877   0
----------------------------------------------------
 CPU Time for optimization 0.034 sec. ( 0 min.)
#table of model fitting parameters
ssm.circE.all<-rbind(
        cbind(circE.MYM.q$CFI, circE.MYO.q$CFI,
              circE.SG.q$CFI, circE.ARAUS.q$CFI),
        cbind(circE.MYM.q$RMSEA, circE.MYO.q$RMSEA,
              circE.SG.q$RMSEA, circE.ARAUS.q$RMSEA),
        cbind(circE.MYM.q$SRMR, circE.MYO.q$SRMR,
              circE.SG.q$SRMR, circE.ARAUS.q$SRMR),
        cbind(circE.MYM.ea$CFI, circE.MYO.ea$CFI,
              circE.SG.ea$CFI, circE.ARAUS.ea$CFI),
        cbind(circE.MYM.ea$RMSEA, circE.MYO.ea$RMSEA,
              circE.SG.ea$RMSEA, circE.ARAUS.ea$RMSEA),
        cbind(circE.MYM.ea$SRMR, circE.MYO.ea$SRMR,
              circE.SG.ea$SRMR, circE.ARAUS.ea$SRMR),
        cbind(circE.MYM.ec$CFI, circE.MYO.ec$CFI,
              circE.SG.ec$CFI, circE.ARAUS.ec$CFI),
        cbind(circE.MYM.ec$RMSEA, circE.MYO.ec$RMSEA,
              circE.SG.ec$RMSEA, circE.ARAUS.ec$RMSEA),
        cbind(circE.MYM.ec$SRMR, circE.MYO.ec$SRMR,
              circE.SG.ec$SRMR, circE.ARAUS.ec$SRMR),
        cbind(circE.MYM.eca$CFI, circE.MYO.eca$CFI,
              circE.SG.eca$CFI, circE.ARAUS.eca$CFI),
        cbind(circE.MYM.eca$RMSEA, circE.MYO.eca$RMSEA,
              circE.SG.eca$RMSEA, circE.ARAUS.eca$RMSEA),
        cbind(circE.MYM.eca$SRMR, circE.MYO.eca$SRMR,
              circE.SG.eca$SRMR, circE.ARAUS.eca$SRMR),
        c(round(res.ssm.mean$results$fit_est,3)[-1],
                          round(res.ssm.mean$results$fit_est,3)[1])) %>%
        as.data.frame(.) %>%
        dplyr::mutate_all(function(x) format(x, nsmall=3)) %>% #format to 3 dec pl
        `colnames<-`(c("MY:M","MY:O","SG","ARAUS")) %>%
        `rownames<-`(c("CFIq","RMSEAq","SRMRq",
                       "CFIea","RMSEAea","SRMRea",
                       "CFIec","RMSEAec","SRMRec",
                       "CFIeca","RMSEAeca","SRMReca",
                       "SSM"))

models.table.new <- ci.rthorr %>%
        dplyr::mutate(CIp=paste0(round(CI,3)," (",round(p,3),")")) %>%
        dplyr::select(CIp,ETHNICITY) %>%
        pivot_wider(names_from = ETHNICITY,values_from = CIp) %>%
        as.data.frame(.) %>%
        `rownames<-`(c("CI (p)")) %>%
        rbind(.,ssm.circE.all) %>%
        cbind(c("","\\ge0.90","\\ge0.13","< 0.06",
                "\\ge0.90","\\ge0.13","< 0.06",
                "\\ge0.90","\\ge0.13","< 0.06",
                "\\ge0.90","\\ge0.13","< 0.06","> 0.7"),.) %>%
        `colnames<-`(c("","MY:M","MY:O","SG","ARAUS")) %>%
        kableExtra::kbl(booktabs = T, linesep = "",
                        #format = "latex",
                        format = "html",
                        label = "modelfitnew",
                        caption = "Summary of model fitting indexes") %>%
        #kable_styling(latex_table_env = "tabularx") %>%
        kable_styling(protect_latex = TRUE) %>%
        kable_paper(full_width = T) #%>%
        #save_kable(paste0(getwd(),"/Table tex files/modelfitnew2.tex"))
models.table.new
MY:M MY:O SG ARAUS
CI (p) 0.597 (0.002) 0.681 (0.002) 0.701 (0.002) 0.847 (0)
CFIq \ge0.90 1.000 1.000 1.000 1.000
RMSEAq \ge0.13 0.000 0.000 0.000 0.000
SRMRq < 0.06 0.016 0.020 0.037 0.023
CFIea \ge0.90 0.734 0.825 0.656 0.949
RMSEAea \ge0.13 0.254 0.185 0.293 0.097
SRMRea < 0.06 0.254 0.217 0.231 0.159
CFIec \ge0.90 0.992 0.907 0.881 1.000
RMSEAec \ge0.13 0.044 0.134 0.172 0.000
SRMRec < 0.06 0.114 0.108 0.142 0.056
CFIeca \ge0.90 0.543 0.611 0.486 0.965
RMSEAeca \ge0.13 0.282 0.234 0.305 0.068
SRMReca < 0.06 0.307 0.237 0.269 0.168
SSM > 0.7 0.395 0.637 0.706 0.803

Summary of model fitting indexes

About

Code and results accompanying paper: "Crossing the Linguistic Causeway: Ethno-national Differences on Soundscape Attributes in Bahasa Melayu"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published