Arabic TTS model (FastPitch) from the tts-arabic-pytorch repo in the ONNX format.
Audio samples can be found here.
Install with:
pip install git+https://github.com/nipponjo/tts_arabic.git
Examples:
# %%
from tts_arabic import tts
# %%
text = "اَلسَّلامُ عَلَيكُم يَا صَدِيقِي."
wave = tts(text, speaker=2, pace=0.9, play=True)
# %% Buckwalter transliteration
text = ">als~alAmu Ealaykum yA Sadiyqiy."
wave = tts(text, speaker=0, play=True)
# %% Unvocalized input
text_unvoc = "القهوة مشروب يعد من بذور البن المحمصة"
wave = tts(text_unvoc, play=True, vowelizer='shakkelha')
Pretrained models:
Model | Model ID | Type | #params | Paper |
---|---|---|---|---|
FastPitch | fastpitch | Text->Mel | 46.3M | arxiv |
MixerTTS | mixer128 | Text->Mel | 2.9M | arxiv |
MixerTTS | mixer80 | Text->Mel | 1.5M | arxiv |
HiFi-GAN | hifigan | Vocoder | 13.9M | arxiv |
Vocos | vocos | Vocoder | 13.4M | arxiv |
TTS options:
from tts_arabic import tts
text = "اَلسَّلامُ عَلَيكُم يَا صَدِيقِي."
wave = tts(
text, # input text
speaker = 1, # speaker id; choose between 0,1,2,3
pace = 1, # speaker pace
denoise = 0.005, # vocoder denoiser strength
play = True, # play audio?
pitch_mul = 1, # pitch multiplier
pitch_add = 0, # pitch offset
vowelizer = None, # vowelizer model
model_id = 'fastpitch', # Model ID for Text->Mel model
vocoder_id = 'hifigan', # Model ID for vocoder model
cuda = None, # Optional; CUDA device index
save_to = './test.wav', # Optionally; save audio WAV file
bits_per_sample = 32, # when save_to is specified (8, 16 or 32 bits)
)