Skip to content

Commit

Permalink
Added content to README
Browse files Browse the repository at this point in the history
  • Loading branch information
willtai committed Apr 9, 2024
1 parent 94f3b7b commit 5277cbf
Show file tree
Hide file tree
Showing 4 changed files with 76 additions and 5 deletions.
66 changes: 66 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,69 @@
# Neo4j GenAI package for Python

This repository contains the official Neo4j GenAI features for Python.

## Installation

This package requires Python (>=3.8.1).

To install the latest stable version, use:

```shell
pip install neo4j-genai
```

## Example
After setting up a Neo4j database instance:
```python
from neo4j import GraphDatabase
from neo4j_genai import VectorRetriever

from random import random

from neo4j_genai.indexes import create_vector_index

URI = "neo4j://localhost:7687"
AUTH = ("neo4j", "password")

INDEX_NAME = "embedding-name"
DIMENSION = 1536

# Connect to Neo4j database
driver = GraphDatabase.driver(URI, auth=AUTH)

# Creating the index
create_vector_index(
driver,
INDEX_NAME,
label="Document",
property="propertyKey",
dimensions=DIMENSION,
similarity_fn="euclidean",
)

# Initialize the retriever
retriever = VectorRetriever(driver, INDEX_NAME)

# Upsert the vector
vector = [random() for _ in range(DIMENSION)]
insert_query = (
"MERGE (n:Document {id: $id})"
"WITH n "
"CALL db.create.setNodeVectorProperty(n, 'propertyKey', $vector)"
"RETURN n"
)
parameters = {
"id": 0,
"vector": vector,
}
driver.execute_query(insert_query, parameters)

# Perform the similarity search for a vector query
query_vector = [random() for _ in range(DIMENSION)]
print(retriever.search(query_vector=query_vector, top_k=5))

```

## Further information
- [The official Neo4j Python driver](https://github.com/neo4j/neo4j-python-driver)
- [Neo4j GenAI integrations](https://neo4j.com/docs/cypher-manual/current/genai-integrations/)
4 changes: 3 additions & 1 deletion examples/openai_search.py
Original file line number Diff line number Diff line change
Expand Up @@ -34,13 +34,15 @@

# Upsert the query
vector = [random() for _ in range(DIMENSION)]

insert_query = (
"MERGE (n:Document)"
"MERGE (n:Document {id: $id})"
"WITH n "
"CALL db.create.setNodeVectorProperty(n, 'propertyKey', $vector)"
"RETURN n"
)
parameters = {
"id": 0,
"vector": vector,
}
driver.execute_query(insert_query, parameters)
Expand Down
7 changes: 5 additions & 2 deletions examples/similarity_search_for_text.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@

from random import random
from neo4j_genai.embedder import Embedder
from neo4j_genai.indexes import create_vector_index
from neo4j_genai.indexes import create_vector_index, drop_index

URI = "neo4j://localhost:7687"
AUTH = ("neo4j", "password")
Expand All @@ -24,6 +24,8 @@ def embed_query(self, text: str) -> List[float]:

embedder = CustomEmbedder()

drop_index(driver, INDEX_NAME)

# Creating the index
create_vector_index(
driver,
Expand All @@ -40,12 +42,13 @@ def embed_query(self, text: str) -> List[float]:
# Upsert the query
vector = [random() for _ in range(DIMENSION)]
insert_query = (
"MERGE (n:Document)"
"MERGE (n:Document {id: $id})"
"WITH n "
"CALL db.create.setNodeVectorProperty(n, 'propertyKey', $vector)"
"RETURN n"
)
parameters = {
"id": 0,
"vector": vector,
}
driver.execute_query(insert_query, parameters)
Expand Down
4 changes: 2 additions & 2 deletions examples/similarity_search_for_vector.py
Original file line number Diff line number Diff line change
Expand Up @@ -30,15 +30,15 @@
# Upsert the vector
vector = [random() for _ in range(DIMENSION)]
insert_query = (
"MERGE (n:Document)"
"MERGE (n:Document {id: $id})"
"WITH n "
"CALL db.create.setNodeVectorProperty(n, 'propertyKey', $vector)"
"RETURN n"
)
parameters = {
"id": 0,
"vector": vector,
}

driver.execute_query(insert_query, parameters)

# Perform the similarity search for a vector query
Expand Down

0 comments on commit 5277cbf

Please sign in to comment.