Skip to content

ncsoft/rotated-box-is-back

Repository files navigation

Rotated Box Is Back : Accurate Box Proposal Network for Scene Text Detection

overview

This material is supplementray code for paper accepted in ICDAR 2021

  1. We highly recommend to use docker image because our model contains custom operation which depends on framework and cuda version.
  2. We provide trained model for ICDAR 2017, 2013 which is in final_checkpoint_ch8 and for ICDAR 2015 which is in final_checkpoint_ch4
  3. This code is mainly focused on inference. To train our model, training gpu like V100 is needed. please check our paper in detail.

REQUIREMENT

  1. Nvidia-docker
  2. Tensorflow 1.14
  3. Miminum GPU requirement : NVIDIA GTX 1080TI

INSTALLATION

  • Make docker image and container
docker build --tag rbimage ./dockerfile
docker run --runtime=nvidia --name rbcontainer -v /rotated-box-is-back-path:/rotated-box-is-back -i -t rbimage /bin/bash
  • build custom operations in container
cd /rotated-box-is-back/nms 
cmake ./
make
./shell.sh

SAMPLE IMAGE INFERENCE

cd /rotated-box-is-back/
python viz.py --test_data_path=./sample --checkpoint_path=./final_checkpoint_ch8 --output_dir=./sample_result  --thres 0.6 --min_size=1600 --max_size=2000

ICDAR 2017 INFERENCE

  1. please replace icdar_testset_path to your-icdar-2017-testset-folder path.
python viz.py --test_data_path=icdar_testset_path --checkpoint_path=./final_checkpoint_ch8 --output_dir=./ic17  --thres 0.6 --min_size=1600 --max_size=2000

ICDAR 2015 INFERENCE

  1. please replace icdar_testset_path to your-icdar-2015-testset-folder path.
  2. To converting evalutation format. Convert result text file like below
python viz.py --test_data_path=icdar_testset_path --checkpoint_path=./final_checkpoint_ch4 --output_dir=./ic15  --thres 0.7 --min_size=1100 --max_size=2000
python text_postprocessing.py -i=./ic15/ -o=./ic15_format/ -e True

ICDAR 2013 INFERENCE

  1. please replace icdar_testset_path to your-icdar-2013-testset-folder path.
  2. To converting evalutation format. Convert result text file like below
python viz.py --test_data_path=icdar_testset_path --checkpoint_path=./final_checkpoint_ch8 --output_dir=./ic13  --thres 0.55 --min_size=700 --max_size=900
python text_postprocessing.py -i=./ic13/ -o=./ic13_format/ -e True -m rec

EVALUATION TABLE

IC13 IC15 IC17
P R F P R F P R F
95.9 89.1 92.4 89.7 84.2 86.9 83.4 68.2 75.0

TRAINING

  1. It can be trained below command line
python train_refine_estimator.py --input_size=1024 --batch_size=2 --checkpoint_path=./finetuning --training_data_path=your-image-path --training_gt_path=your-gt-path  --learning_rate=0.00001 --max_epochs=500  --save_summary_steps=1000 --warmup_path=./final_checkpoint_ch8

ACKNOWLEDGEMENT

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 1711125972, Audio-Visual Perception for Autonomous Rescue Drones).

CITATION

If you found it is helpfull for your research, please cite:

Lee J., Lee J., Yang C., Lee Y., Lee J. (2021) Rotated Box Is Back: An Accurate Box Proposal Network for Scene Text Detection. In: Lladós J., Lopresti D., Uchida S. (eds) Document Analysis and Recognition – ICDAR 2021. ICDAR 2021. Lecture Notes in Computer Science, vol 12824. Springer, Cham. https://doi.org/10.1007/978-3-030-86337-1_4

About

Accurate Box Proposal Network for Scene Text Detection

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published