Video retrieval interface based on AI.
- Retrieve images based on english description, similar images, keywords, hybrids,...
- Context slider supports viewing frames around keyframes
- Select and load local or full data partition
- Access online youtube videos at any time or frame
- Queue, add new or delete selected frame at any position
- Export the queue as a file (*.csv) for the qualifying round
- Load, edit and submit final results via API
- Adjust output quantity, show real-time search results
- Manage search results based on multi-tabs
- Requires at least 120GB of available storage
- Now available on Windows, MacOS and Linux
- Requirements: Python >= 3.8, <= 3.10.
- Recommended: Miniconda/Anaconda.
- Install git.
- Download the
badger-teamx-retrieval
repository
git clone https://github.com/mrtrieuphong/badger-teamx-retrieval.git
cd badger-teamx-retrieval
- Use
Conda
[Recommended]
conda create -n badger python=3.8
conda activate badger-venv
- Use
virtualenv
pip install virtualenv
python3 -m venv badger-venv
# MacOS, Ubuntu
source badger-venv/bin/activate
# Windows
badger-venv/Scripts/activate
pip install -r requirements.txt
- OpenAI CLIP model: ../CLIP/clip/bpe_simple_vocab_16e6.txt.gz
- Images dataset: ../Images
- Features: ../Features
- Create thumbnails
python3 Tools/1_create_thumbnails.py
- Create photo ids
python3 Tools/2_create_photo_ids.py
- Create features
python3 Tools/3_create_features.py
- Create mapping
python3 Tools/4_create_mapping.py