Math and Statistics for Data Science
- Descriptive Statistics: useful for data exploration
- Central Tendency
- Variability
- Correlation
- Distribution Types (Uniform, Binomial, Poisson, Normal): useful for data exploration
- Inferential Statistics: useful for data exploration and hypothesis testing
- Linear regression
- Visualization (Bar charts, Histograms, box plots, scatter plots)
- Linear Algebra: useful for PCA & Regression
- Calculus: useful for gradient decent
- Numpy
- Scipy
- Pandas
- Math for Data Science (Learning Path) – Real Python
- Probabilistic Machine Learning: An Introduction
- ML for everyone
- Math is Fun
Anaconda https://repo.anaconda.com/archive/Anaconda3-2022.10-Windows-x86_64.exe
https://code.visualstudio.com/Download
https://youtube.com/playlist?list=PL39RMbpB79NPKxyyAE6g2HFOM1sTXLrqU