-
Notifications
You must be signed in to change notification settings - Fork 442
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Math/Random and its tests implementation #432
base: master
Are you sure you want to change the base?
Changes from all commits
46a026e
8f73873
9de2987
282f3d5
9a0dffe
b201ab3
9337219
3196dac
7bcc433
c5e5804
ac52472
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,100 @@ | ||
#ifndef Magnum_Math_Random_h | ||
#define Magnum_Math_Random_h | ||
|
||
// TO DO Licence things. | ||
|
||
#include <random> | ||
#include <chrono> | ||
#include "Magnum/Types.h" | ||
#include "Magnum/Math/Constants.h" | ||
#include "Magnum/Math/Vector2.h" | ||
#include "Magnum/Math/Vector3.h" | ||
#include "Magnum/Math/Quaternion.h" | ||
#include "Magnum/Math/Functions.h" | ||
|
||
namespace Magnum | ||
{ | ||
namespace Math | ||
{ | ||
|
||
namespace Random | ||
{ | ||
class RandomGenerator | ||
{ | ||
public: | ||
RandomGenerator() | ||
{ | ||
std::seed_seq seeds{{ | ||
static_cast<std::uintmax_t>(std::random_device{}()), | ||
static_cast<std::uintmax_t>(std::chrono::steady_clock::now() | ||
.time_since_epoch() | ||
.count()), | ||
}}; | ||
g = std::mt19937{seeds}; | ||
}; | ||
template <typename T> | ||
typename std::enable_if<std::is_same<Int, T>::value, T>::type | ||
generate(T start = -Magnum::Math::Constants<T>::inf(), | ||
T end = Magnum::Math::Constants<T>::inf()) | ||
{ | ||
return std::uniform_int_distribution<T>{start, end}(g); | ||
} | ||
|
||
template <typename T> | ||
typename std::enable_if<std::is_same<Float, T>::value, T>::type | ||
generate(T start = -Magnum::Math::Constants<T>::inf(), | ||
T end = Magnum::Math::Constants<T>::inf()) | ||
{ | ||
return std::uniform_real_distribution<T>{start, end}(g); | ||
} | ||
|
||
private: | ||
// namespace Implementation | ||
std::mt19937 g; | ||
}; | ||
|
||
template <class T = Float> | ||
T randomScalar(RandomGenerator &g, T begin = 0.0f, T end = 1.0f) | ||
{ | ||
|
||
return g.generate(static_cast<T>(begin), | ||
static_cast<T>(end)); | ||
} | ||
|
||
template <class T = Float> | ||
Vector2<T> randomUnitVector2(RandomGenerator &g) | ||
{ | ||
auto a = g.generate(0.0f, 2 * Math::Constants<T>::pi()); | ||
return {std::cos(a), std::sin(a)}; | ||
} | ||
|
||
template <class T = Float> | ||
Vector3<T> randomUnitVector3(RandomGenerator &g) | ||
{ | ||
// Better to have it "theta" and "z" than three random numbers. | ||
// https://mathworld.wolfram.com/SpherePointPicking.html | ||
auto a = g.generate(0.0f, 2 * Math::Constants<T>::pi()); | ||
auto z = randomScalar(g, -1.0f, -1.0f); | ||
auto r = sqrt<T>(1 - z * z); | ||
return {r * std::cos(a), r * std::sin(a), z}; | ||
} | ||
|
||
template <class T = Float> | ||
Quaternion<T> randomRotation(RandomGenerator &g) | ||
{ | ||
//http://planning.cs.uiuc.edu/node198.html | ||
auto u = randomScalar(g); | ||
auto v = 2 * Math::Constants<T>::pi() * randomScalar(g); | ||
auto w = 2 * Math::Constants<T>::pi() * randomScalar(g); | ||
return Quaternion<T>({sqrt<T>(1 - u) * std::sin(v), | ||
sqrt<T>(1 - u) * std::cos(v), | ||
sqrt<T>(u) * std::sin(w)}, | ||
sqrt<T>(u) * std::cos(w)); | ||
} | ||
|
||
} // namespace Random | ||
|
||
} // namespace Math | ||
} // namespace Magnum | ||
|
||
#endif |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,101 @@ | ||
#include <Corrade/TestSuite/Tester.h> | ||
#include <Corrade/TestSuite/Compare/Numeric.h> | ||
#include <Corrade/Utility/DebugStl.h> | ||
|
||
#include "Magnum/Math/Random.h" | ||
|
||
namespace Magnum | ||
{ | ||
namespace Math | ||
{ | ||
|
||
namespace Test | ||
{ | ||
namespace | ||
{ | ||
|
||
struct RandomTest : Corrade::TestSuite::Tester | ||
{ | ||
explicit RandomTest(); | ||
|
||
void randScalar(); | ||
void unitVector2(); | ||
void unitVector3(); | ||
void randomRotation(); | ||
void randomDiceChiSquare(); | ||
}; | ||
|
||
typedef Vector<2, Float> Vector2; | ||
typedef Vector<3, Float> Vector3; | ||
typedef Math::Constants<Float> Constants; | ||
|
||
RandomTest::RandomTest() | ||
{ | ||
Corrade::TestSuite::Tester::addRepeatedTests( | ||
{&RandomTest::randScalar, | ||
&RandomTest::unitVector2, | ||
&RandomTest::unitVector3, | ||
&RandomTest::randomRotation}, | ||
/*repeat number*/ 200); | ||
Corrade::TestSuite::Tester::addTests( | ||
{&RandomTest::randomDiceChiSquare}); | ||
} | ||
|
||
void RandomTest::randScalar() | ||
{ | ||
Math::Random::RandomGenerator g; | ||
CORRADE_COMPARE_AS(Math::Random::randomScalar<Float>(g, -1.0, 1.0), 1.0f, Corrade::TestSuite::Compare::LessOrEqual); | ||
CORRADE_COMPARE_AS(Math::Random::randomScalar<Float>(g, -1.0, 1.0), -1.0f, Corrade::TestSuite::Compare::GreaterOrEqual); | ||
} | ||
|
||
void RandomTest::unitVector2() | ||
{ | ||
Math::Random::RandomGenerator g; | ||
CORRADE_COMPARE((Math::Random::randomUnitVector2(g)).length(), 1.0f); | ||
} | ||
void RandomTest::unitVector3() | ||
{ | ||
Math::Random::RandomGenerator g; | ||
|
||
CORRADE_COMPARE((Math::Random::randomUnitVector3(g)).length(), 1.0f); | ||
} | ||
|
||
void RandomTest::randomRotation() | ||
{ | ||
Math::Random::RandomGenerator g; | ||
|
||
CORRADE_COMPARE(Math::Random::randomRotation(g).length(), 1.0f); | ||
} | ||
|
||
void RandomTest::randomDiceChiSquare() | ||
{ | ||
// A step by step explanation | ||
// https://rpg.stackexchange.com/questions/70802/how-can-i-test-whether-a-die-is-fair | ||
Math::Random::RandomGenerator g; | ||
|
||
int error_count = 0; // We have 1 chance to over shoot. Thats why no repeated test. | ||
|
||
const Int dice_side = 20; | ||
const Int expected = 10000; | ||
const Float thresholdfor100 = 36.191; | ||
|
||
for (auto i = 0; i < 100; i++) | ||
{ | ||
std::vector<Int> faces(dice_side, 0); | ||
for (std::size_t i = 0; i < expected * dice_side; i++) | ||
faces[Math::Random::randomScalar<Int>(g, 0, dice_side - 1)]++; | ||
Float chi_square = 0.0f; | ||
for (std::size_t i = 0; i < dice_side; i++) | ||
chi_square += Float(pow((faces[i] - expected), 2)) / expected; | ||
if (chi_square > thresholdfor100) | ||
error_count++; | ||
} | ||
CORRADE_COMPARE_AS(error_count, 2, Corrade::TestSuite::Compare::Less); | ||
} | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. It would be great to have some sort of distribution verification in the tests, to ensure we're not accidentally skewing the distribution to something non-uniform -- how good are your statistics skills? :) Found this on SO, it suggests using a Chi Squared test. I never did such a thing myself tho :D There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. We have easter incoming ! :) There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Well, I put a chi square test. In testing, I couldnt see a "tolerant" testing scheme(Chi square let 1 fail; like 99% ). |
||
|
||
} // namespace | ||
} // namespace Test | ||
} // namespace Math | ||
} // namespace Magnum | ||
|
||
CORRADE_TEST_MAIN(Magnum::Math::Test::RandomTest) |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I guess this is where things become hard 😅
I actually have no idea here -- will the distribution be still uniform if sin/cos is used? I guess it will? Ideally this would be without the extra overhead of trig functions, but I don't have any idea if that's doable ... in this thread on SO they use a Gaussian distribution as an input, but .. ¯\_(ツ)_/¯
If you have better references than me, mention them here please :)
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
For this case sin and cos shall not be get affected ? (sin (+ + - - )[50%], cos (+ - - + )[50%] )
So this shall be as accurate as the generator itself ?
Can you also comment about what I read here ? It looks accurate according to this. The main discussion seems like "getting 3 random numbers and normalizing" vs "2 numbers(theta and height) and calculating". The latter seems more accurate, which is sin/cos.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yes that's a great reference, thanks -- a link to it should go in the documentation. I didn't absorb it fully yet, but yeah it sounds like a good proof.
this is what you do for quaternions tho .. can the two-/three-dimensional case be extended for those as well?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Quaternion is link here.
Added both to the code :)