Skip to content

Commit

Permalink
Merge pull request #54 from rcurtin/header-fix
Browse files Browse the repository at this point in the history
Header documentation fix
  • Loading branch information
rcurtin authored Nov 28, 2018
2 parents 38ee753 + f186045 commit 3271398
Show file tree
Hide file tree
Showing 2 changed files with 17 additions and 5 deletions.
12 changes: 12 additions & 0 deletions HISTORY.md
Original file line number Diff line number Diff line change
@@ -1,3 +1,15 @@
### ensmallen 1.11.0
###### ????-??-??
* Add WNGrad optimizer.

* Fix header name in documentation samples.

### ensmallen 1.10.1
###### 2018-11-16
* Fixes for GridSearch optimizer.

* Include documentation with release.

### ensmallen 1.10.0
###### 2018-10-20
* Initial release.
Expand Down
10 changes: 5 additions & 5 deletions doc/function_types.md
Original file line number Diff line number Diff line change
Expand Up @@ -36,7 +36,7 @@ An example program that implements the objective function f(x) = 2 |x|^2 is
shown below, using the simulated annealing optimizer.

```c++
#include <ensmallen>
#include <ensmallen.hpp>

class SquaredFunction
{
Expand Down Expand Up @@ -135,7 +135,7 @@ runtime of an implementation that uses `Evaluate()` and `Gradient()`, and the
runtime of an implementation that uses `EvaluateWithGradient()`.

```c++
#include <ensmallen>
#include <ensmallen.hpp>

// Define a differentiable objective function by implementing both Evaluate()
// and Gradient() separately.
Expand Down Expand Up @@ -348,7 +348,7 @@ where $\operatorname{data}(i)$ represents the data point indexed by $i$ and
$\operatorname{responses}(i)$ represents the observed response indexed by $i$.

```c++
#include <ensmallen>
#include <ensmallen.hpp>

// This class implements the linear regression objective function as an
// arbitrary separable function type.
Expand Down Expand Up @@ -541,7 +541,7 @@ only implements `EvaluateWithGradient()` in order to avoid redundant
calculations.

```c++
#include <ensmallen>
#include <ensmallen.hpp>

// This class implements the linear regression objective function as an
// arbitrary separable function type.
Expand Down Expand Up @@ -697,7 +697,7 @@ The following optimizers can be used in this way to optimize a categorical funct
An example program showing usage of categorical optimization is shown below.

```c++
#include <ensmallen>
#include <ensmallen.hpp>

// An implementation of a simple categorical function. The parameters can be
// understood as x = [c1 c2 c3]. When c1 = 0, c2 = 2, and c3 = 1, the value of
Expand Down

0 comments on commit 3271398

Please sign in to comment.