This is the implementation code of a submited conference paper(ICBME 2021).
First, clone this source code. Then, download the dataset "Four class motor imagery (001-2014)" of the BCI competition IV-2a.Put all files of the dataset (A01T.mat-A09E.mat) into a subfolder within the project called 'dataset'.
- Python == 3.7 or 3.8
- tensorflow == 2.X (verified working with 2.0 - 2.3, both for CPU and GPU)
- numpy
- sklearn
- scipy
python main.py --help
Stage and Cross training strategy
optional arguments:
-h, --help show this help message and exit
--path PATH path to the dataset folder see : bcni datasets fotmat
--patience PATIENCE early stopping callback patience
--epochs EPOCHS epochs model will be trained on
--frequency_cut_low FREQUENCY_CUT_LOW
lower cut-off frequency in proprocessing
--frequency_cut_high FREQUENCY_CUT_HIGH
higher cut-off frequency in proprocessing
--subject SUBJECT target subject
--k_fold K_FOLD
--iterations ITERATIONS
--fine_tune_epochs FINE_TUNE_EPOCHS
--save_model SAVE_MODEL
if true cross trained model wont be deleted after
execution
--stage if true stage training will be used instead of
standard training
--cross_subject model will be pre-trained on all subjects of the data
set
-Enable stage training
python main.py --subject 1 --patience 50 --iterations 5 --epochs 500 --fine_tune_epochs 100 --stage --cross_subject
------------------- ------------------
Model EEGNet
Stage training Enable
Cross Subjects Enable
Training Epochs 500
Training Iterations 5
K_Fold Enable
Accuracy 0.79679
------------------- ------------------
-Disable stage training (default)
python main.py --subject 1 --patience 50 --iterations 5 --epochs 500 --fine_tune_epochs 100
------------------- ------------------
Model EEGNet
Stage training Disable
Cross Subjects Disable
Training Epochs 500
Training Iterations 5
K_Fold Enable
Accuracy 0.7523131672597865
------------------- ------------------
- Javad Sameri [email protected]
- Hesaam Zarooshan [email protected]