-
Notifications
You must be signed in to change notification settings - Fork 339
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
normalize vector data to a standard form during insertion (#27469)
Signed-off-by: NamCaoHai <[email protected]>
- Loading branch information
Showing
4 changed files
with
163 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,112 @@ | ||
import time | ||
|
||
import numpy as np | ||
from pymilvus import ( | ||
connections, | ||
utility, | ||
FieldSchema, CollectionSchema, DataType, | ||
Collection, | ||
MilvusClient | ||
) | ||
|
||
fmt = "\n=== {:30} ===\n" | ||
search_latency_fmt = "search latency = {:.4f}s" | ||
num_entities, dim = 3000, 8 | ||
|
||
|
||
print(fmt.format("start connecting to Milvus")) | ||
# this is milvus standalone | ||
connection = connections.connect( | ||
alias="default", | ||
host='localhost', # or '0.0.0.0' or 'localhost' | ||
port='19530' | ||
) | ||
|
||
client = MilvusClient(connections=connection) | ||
|
||
has = utility.has_collection("hello_milvus") | ||
print(f"Does collection hello_milvus exist in Milvus: {has}") | ||
if has: | ||
utility.drop_collection("hello_milvus") | ||
|
||
fields = [ | ||
FieldSchema(name="pk", dtype=DataType.VARCHAR, is_primary=True, auto_id=False, max_length=100), | ||
FieldSchema(name="random", dtype=DataType.DOUBLE), | ||
FieldSchema(name="embeddings1", dtype=DataType.FLOAT_VECTOR, dim=dim), | ||
FieldSchema(name="embeddings2", dtype=DataType.FLOAT_VECTOR, dim=dim) | ||
] | ||
|
||
schema = CollectionSchema(fields, "hello_milvus is the simplest demo to introduce the APIs") | ||
|
||
print(fmt.format("Create collection `hello_milvus`")) | ||
|
||
print(fmt.format("Message for handling an invalid format in the normalization_fields value")) # you can try with other value like: dict,... | ||
try: | ||
hello_milvus = Collection("hello_milvus", schema, consistency_level="Strong", normalization_fields='embeddings1') | ||
except BaseException as e: | ||
print(e) | ||
|
||
|
||
print(fmt.format("Message for handling the invalid vector fields")) | ||
try: | ||
hello_milvus = Collection("hello_milvus", schema, consistency_level="Strong", normalization_fields=['embddings']) | ||
except BaseException as e: | ||
print(e) | ||
|
||
print(fmt.format("Insert data, with conversion to standard form")) | ||
|
||
hello_milvus = Collection("hello_milvus", schema, consistency_level="Strong", normalization_fields=['embeddings1']) | ||
|
||
print(fmt.format("Start inserting a row")) | ||
rng = np.random.default_rng(seed=19530) | ||
|
||
row = { | ||
"pk": "19530", | ||
"random": 0.5, | ||
"embeddings1": rng.random((1, dim), np.float32)[0], | ||
"embeddings2": rng.random((1, dim), np.float32)[0] | ||
} | ||
_row = row.copy() | ||
hello_milvus.insert(row) | ||
|
||
index_param = {"index_type": "FLAT", "metric_type": "L2", "params": {}} | ||
hello_milvus.create_index("embeddings1", index_param) | ||
hello_milvus.create_index("embeddings2", index_param) | ||
hello_milvus.load() | ||
|
||
original_vector = _row['embeddings1'] | ||
insert_vector = hello_milvus.query( | ||
expr="pk == '19530'", | ||
output_fields=["embeddings1"], | ||
)[0]['embeddings1'] | ||
|
||
print(fmt.format("Mean and standard deviation before normalization.")) | ||
print("Mean: ", np.mean(original_vector)) | ||
print("Std: ", np.std(original_vector)) | ||
|
||
print(fmt.format("Mean and standard deviation after normalization.")) | ||
print("Mean: ", np.mean(insert_vector)) | ||
print("Std: ", np.std(insert_vector)) | ||
|
||
|
||
print(fmt.format("Start inserting entities")) | ||
|
||
entities = [ | ||
[str(i) for i in range(num_entities)], | ||
rng.random(num_entities).tolist(), | ||
rng.random((num_entities, dim), np.float32), | ||
rng.random((num_entities, dim), np.float32), | ||
] | ||
|
||
insert_result = hello_milvus.insert(entities) | ||
|
||
insert_vector = hello_milvus.query( | ||
expr="pk == '1'", | ||
output_fields=["embeddings1"], | ||
)[0]['embeddings1'] | ||
|
||
print(fmt.format("Mean and standard deviation after normalization.")) | ||
print("Mean: ", np.mean(insert_vector)) | ||
print("Std: ", np.std(insert_vector)) | ||
|
||
utility.drop_collection("hello_milvus") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters