Skip to content

Experiments for the article "Handshape Recognition for Small Datasets"

License

Notifications You must be signed in to change notification settings

midusi/cacic2019-handshapes

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

cacic2019-handshapes

Experiments for the article "Handshape Recognition for Small Dataset"

Content

Quickstart

To start the docker container execute the following command

$ ./bin/start [-n <string>] [-t <tag-name>] [--sudo] [--build] [-d] [-c <command>]

Tags

  • latest The latest release of TensorFlow CPU binary image. Default.
  • nightly Nightly builds of the TensorFlow image. (unstable) version Specify the version of the TensorFlow binary image, for example: 2.1.0
  • devel Nightly builds of a TensorFlow master development environment. Includes TensorFlow source code.

Variants

Each base tag has variants that add or change functionality:

  • <tag>-gpu The specified tag release with GPU support. (See below)
  • <tag>-py3 The specified tag release with Python 3 support.
  • <tag>-jupyter The specified tag release with Jupyter (includes TensorFlow tutorial notebooks)

You can use multiple variants at once. For example, the following downloads TensorFlow release images to your machine. For example:

$ ./bin/start -n myContainer --build  # latest stable release
$ ./bin/start -n myContainer --build -t devel-gpu # nightly dev release w/ GPU support
$ ./bin/start -n myContainer --build -t latest-gpu-jupyter # latest release w/ GPU support and Jupyter

Once the docker container is running it will execute the contents of the /bin/execute file.

You can execute

$ docker exec -it <container-id> /bin/sh -c "[ -e /bin/bash ] && /bin/bash || /bin/sh"

to access the running container's shell.

Datasets

In our paper we used the datasets RWTH-Phoenix, LSA16 and CIARP. We used the library (https://github.com/midusi/handshape_datasets) to fetch the datasets.

Models & Techniques

Prototypical Networks for Few-shot Learning

Tensorflow v2 implementation of NIPS 2017 Paper Prototypical Networks for Few-shot Learning.

Implementation using protonet.

Training and Eval

Training

Run the following command to run training on <config> with default parameters.

$ ./bin/run --model protonet --mode train --config <config>

<config> = lsa16 | rwth | Ciarp

Evaluating

To run evaluation on a specific dataset

$ ./bin/run --model protonet --mode eval --config <config>

<config> = lsa16 | rwth | Ciarp

Dense Net

We implemented Densenet using squeeze and excitation layers in tensorflow 2 for our experiments. To see its implementation go to densenet.

For more information about densenet please refer to the original paper.

Training and Eval

Training

Run the following command to run training on <config> with default parameters.

$ ./bin/run --model densenet --mode train --config <config>

<config> = lsa16 | rwth | Ciarp

Evaluating

To run evaluation on a specific dataset

$ ./bin/run --model densenet --mode eval --config <config>

<config> = lsa16 | rwth | Ciarp

Transfer Learning

Training and Eval

Training

Run the following command to run training on <config> with default parameters.

$ ./bin/run --tl --model <model> --mode train --config <config>
<model> = vgg16 | vgg19 | inception_v3 | densenet | densenet169 | densenet201
<config> = lsa16 | rwth | Ciarp

Evaluating

To run evaluation on a specific dataset

$ ./bin/run --tl --model <model> --mode eval --config <config>
<model> = vgg16 | vgg19 | inception_v3 | densenet | densenet169 | densenet201
<config> = lsa16 | rwth | Ciarp

Results

In the /results directory you can find the results of a training processes using a <model> on a specific <dataset>:

.
├─ . . .
├─ results
│  ├─ <dataset>                            # results for an specific dataset.
│  │  ├─ <model>                           # results training a <model> on a <dataset>.
│  │  │  ├─ models                         # ".h5" files for trained models.
│  │  │  ├─ results                        # ".csv" files with the different metrics for each training period.
│  │  │  ├─ summaries                      # tensorboard summaries.
│  │  │  ├─ config                         # optional configuration files.
│  │  └─ └─ <dataset>_<model>_results.csv  # ".csv" file in which the relationships between configurations, models, results and 
summaries are listed by date.
│  └─ summary.csv                          # contains the summary of all the training
└─ . . .

where

<dataset> = lsa16 | rwth | Ciarp
<model> = densenet | protonet | vgg16 | vgg19 | inception_v3 | densenet | densenet169 | densenet201

To run TensorBoard, use the following command:

$ tensorboard --logdir=./results/<dataset>/<model>/summaries

About

Experiments for the article "Handshape Recognition for Small Datasets"

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •