Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bump mlflow from 2.10.0 to 2.11.1 #382

Closed
wants to merge 1 commit into from

Conversation

dependabot[bot]
Copy link
Contributor

@dependabot dependabot bot commented on behalf of github Mar 12, 2024

Bumps mlflow from 2.10.0 to 2.11.1.

Release notes

Sourced from mlflow's releases.

MLflow 2.11.1 is a patch release, containing fixes for some Databricks integrations and other various issues.

Bug fixes:

Small bug fixes and documentation updates:

#11336, #11335, @​harupy; #11303, @​B-Step62; #11319, @​BenWilson2; #11306, @​daniellok-db

MLflow 2.11.0 includes several major features and improvements

With the MLflow 2.11.0 release, we're excited to bring a series of large and impactful features that span both GenAI and Deep Learning use cases.

  • The MLflow Tracking UI got an overhaul to better support the review and comparison of training runs for Deep Learning workloads. From grouping to large-scale metric plotting throughout the iterations of a DL model's training cycle, there are a large number of quality of life improvements to enhance your Deep Learning MLOps workflow.

  • Support for the popular PEFT library from HuggingFace is now available in the mlflow.transformers flavor. In addition to PEFT support, we've removed the restrictions on Pipeline types that can be logged to MLflow, as well as the ability to, when developing and testing models, log a transformers pipeline without copying foundational model weights. These enhancements strive to make the transformers flavor more useful for cutting-edge GenAI models, new pipeline types, and to simplify the development process of prompt engineering, fine-tuning, and to make iterative development faster and cheaper. Give the updated flavor a try today! (#11240, @​B-Step62)

  • We've added support to both PyTorch and TensorFlow for automatic model weights checkpointing (including resumption from a previous state) for the auto logging implementations within both flavors. This highly requested feature allows you to automatically configure long-running Deep Learning training runs to keep a safe storage of your best epoch, eliminating the risk of a failure late in training from losing the state of the model optimization. (#11197, #10935, @​WeichenXu123)

  • We've added a new interface to Pyfunc for GenAI workloads. The new ChatModel interface allows for interacting with a deployed GenAI chat model as you would with any other provider. The simplified interface (no longer requiring conformance to a Pandas DataFrame input type) strives to unify the API interface experience. (#10820, @​daniellok-db)

  • We now support Keras 3. This large overhaul of the Keras library introduced new fundamental changes to how Keras integrates with different DL frameworks, bringing with it a host of new functionality and interoperability. To learn more, see the Keras 3.0 Tutorial to start using the updated model flavor today! (#10830, @​chenmoneygithub)

  • Mistral AI has been added as a native provider for the MLflow Deployments Server. You can now create proxied connections to the Mistral AI services for completions and embeddings with their powerful GenAI models. (#11020, @​thnguyendn)

  • We've added compatibility support for the OpenAI 1.x SDK. Whether you're using an OpenAI LLM for model evaluation or calling OpenAI within a LangChain model, you'll now be able to utilize the 1.x family of the OpenAI SDK without having to point to deprecated legacy APIs. (#11123, @​harupy)

Features:

  • [UI] Revamp the MLflow Tracking UI for Deep Learning workflows, offering a more intuitive and efficient user experience (#11233, @​daniellok-db)
  • [Data] Introduce the ability to log datasets without loading them into memory, optimizing resource usage and processing time (#11172, @​chenmoneygithub)
  • [Models] Introduce logging frequency controls for TensorFlow, aligning it with Keras for consistent performance monitoring (#11094, @​chenmoneygithub)
  • [Models] Add PySpark DataFrame support in mlflow.pyfunc.predict, enhancing data compatibility and analysis options for batch inference (#10939, @​ernestwong-db)
  • [Models] Introduce new CLI commands for updating model requirements, facilitating easier maintenance, validation and updating of models without having to re-log (#11061, @​daniellok-db)

... (truncated)

Changelog

Sourced from mlflow's changelog.

2.11.1 (2024-03-06)

MLflow 2.11.1 is a patch release, containing fixes for some Databricks integrations and other various issues.

Bug fixes:

Small bug fixes and documentation updates:

#11336, #11335, @​harupy; #11303, @​B-Step62; #11319, @​BenWilson2; #11306, @​daniellok-db

2.11.0 (2024-03-01)

MLflow 2.11.0 includes several major features and improvements

With the MLflow 2.11.0 release, we're excited to bring a series of large and impactful features that span both GenAI and Deep Learning use cases.

  • The MLflow Tracking UI got an overhaul to better support the review and comparison of training runs for Deep Learning workloads. From grouping to large-scale metric plotting throughout the iterations of a DL model's training cycle, there are a large number of quality of life improvements to enhance your Deep Learning MLOps workflow.

  • Support for the popular PEFT library from HuggingFace is now available in the mlflow.transformers flavor. In addition to PEFT support, we've removed the restrictions on Pipeline types that can be logged to MLflow, as well as the ability to, when developing and testing models, log a transformers pipeline without copying foundational model weights. These enhancements strive to make the transformers flavor more useful for cutting-edge GenAI models, new pipeline types, and to simplify the development process of prompt engineering, fine-tuning, and to make iterative development faster and cheaper. Give the updated flavor a try today! (#11240, @​B-Step62)

  • We've added support to both PyTorch and TensorFlow for automatic model weights checkpointing (including resumption from a previous state) for the auto logging implementations within both flavors. This highly requested feature allows you to automatically configure long-running Deep Learning training runs to keep a safe storage of your best epoch, eliminating the risk of a failure late in training from losing the state of the model optimization. (#11197, #10935, @​WeichenXu123)

  • We've added a new interface to Pyfunc for GenAI workloads. The new ChatModel interface allows for interacting with a deployed GenAI chat model as you would with any other provider. The simplified interface (no longer requiring conformance to a Pandas DataFrame input type) strives to unify the API interface experience. (#10820, @​daniellok-db)

  • We now support Keras 3. This large overhaul of the Keras library introduced new fundamental changes to how Keras integrates with different DL frameworks, bringing with it a host of new functionality and interoperability. To learn more, see the Keras 3.0 Tutorial to start using the updated model flavor today! (#10830, @​chenmoneygithub)

  • Mistral AI has been added as a native provider for the MLflow Deployments Server. You can now create proxied connections to the Mistral AI services for completions and embeddings with their powerful GenAI models. (#11020, @​thnguyendn)

  • We've added compatibility support for the OpenAI 1.x SDK. Whether you're using an OpenAI LLM for model evaluation or calling OpenAI within a LangChain model, you'll now be able to utilize the 1.x family of the OpenAI SDK without having to point to deprecated legacy APIs. (#11123, @​harupy)

Features:

  • [UI] Revamp the MLflow Tracking UI for Deep Learning workflows, offering a more intuitive and efficient user experience (#11233, @​daniellok-db)

... (truncated)

Commits

Dependabot compatibility score

Dependabot will resolve any conflicts with this PR as long as you don't alter it yourself. You can also trigger a rebase manually by commenting @dependabot rebase.


Dependabot commands and options

You can trigger Dependabot actions by commenting on this PR:

  • @dependabot rebase will rebase this PR
  • @dependabot recreate will recreate this PR, overwriting any edits that have been made to it
  • @dependabot merge will merge this PR after your CI passes on it
  • @dependabot squash and merge will squash and merge this PR after your CI passes on it
  • @dependabot cancel merge will cancel a previously requested merge and block automerging
  • @dependabot reopen will reopen this PR if it is closed
  • @dependabot close will close this PR and stop Dependabot recreating it. You can achieve the same result by closing it manually
  • @dependabot show <dependency name> ignore conditions will show all of the ignore conditions of the specified dependency
  • @dependabot ignore this major version will close this PR and stop Dependabot creating any more for this major version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this minor version will close this PR and stop Dependabot creating any more for this minor version (unless you reopen the PR or upgrade to it yourself)
  • @dependabot ignore this dependency will close this PR and stop Dependabot creating any more for this dependency (unless you reopen the PR or upgrade to it yourself)

@dependabot dependabot bot added dependencies Pull requests that update a dependency file python Pull requests that update Python code labels Mar 12, 2024
Bumps [mlflow](https://github.com/mlflow/mlflow) from 2.10.0 to 2.11.1.
- [Release notes](https://github.com/mlflow/mlflow/releases)
- [Changelog](https://github.com/mlflow/mlflow/blob/master/CHANGELOG.md)
- [Commits](mlflow/mlflow@v2.10.0...v2.11.1)

---
updated-dependencies:
- dependency-name: mlflow
  dependency-type: direct:production
  update-type: version-update:semver-minor
...

Signed-off-by: dependabot[bot] <[email protected]>
@dependabot dependabot bot force-pushed the dependabot/pip/mlflow-2.11.1 branch from 3862d4d to 9dd1a71 Compare March 13, 2024 11:57
Copy link
Contributor Author

dependabot bot commented on behalf of github Mar 13, 2024

Looks like mlflow is up-to-date now, so this is no longer needed.

@dependabot dependabot bot closed this Mar 13, 2024
@dependabot dependabot bot deleted the dependabot/pip/mlflow-2.11.1 branch March 13, 2024 15:03
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
dependencies Pull requests that update a dependency file python Pull requests that update Python code
Projects
None yet
Development

Successfully merging this pull request may close these issues.

0 participants