Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Prove that some small graphs are acyclic #3573

Merged
merged 13 commits into from
Oct 20, 2023
63 changes: 63 additions & 0 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -501875,6 +501875,69 @@ it has no (non-trivial) cycles. (Contributed by BTernaryTau,
NUOUPUQURUS $.
$}

${
$d f g p $. $d f G p $. $d f V p $.
avekens marked this conversation as resolved.
Show resolved Hide resolved
acycgr0v.1 $e |- V = ( Vtx ` G ) $.
$( A null graph (with no vertices) is an acyclic graph. (Contributed by
BTernaryTau, 11-Oct-2023.) $)
acycgr0v $p |- ( ( G e. W /\ V = (/) ) -> G e. AcyclicGraph ) $=
( vf vp vg c0 wceq wcel cv ccycls cfv wbr wne wa wex wn df-br nexdv cwlks
cacycgr br0 wss cpths cc0 chash cvv df-cycls relmptopab cycliswlk 3imtr3i
wb cop relssi cvtx eqeq1i g0wlk0 sylbi syl5sseq breq notbid 3syl intnanrd
ss0 mpbiri isacycgr biimpar sylan2 ) BHIZACJZEKZFKZALMZNZVLHOZPZFQZEQRZAU
BJZVJVREVJVQFVJVOVPVJVORZVLVMHNZRZVLVMUCVJVNHUDVNHIZWAWCUMVJAUAMZVNHEFVNW
EVLVMGKUEMNUFVMMVLUGMVMMIPGEFUHALEGFUIUJVOVLVMWENVLVMUNZVNJWFWEJVMVLAUKVL
VMVNSVLVMWESULUOVJAUPMZHIWEHIBWGHDUQAURUSUTVNVEWDVOWBVLVMVNHVAVBVCVFVDTTV
KVTVSEACFVGVHVI $.
$}

${
$d f G p $. $d f V p $.
acycgrv.1 $e |- V = ( Vtx ` G ) $.
$( A multigraph with one vertex is an acyclic graph. (Contributed by
BTernaryTau, 12-Oct-2023.) $)
acycgr1v $p |- ( ( G e. UMGraph /\ ( # ` V ) = 1 ) ->
G e. AcyclicGraph ) $=
( vf vp cumgr wcel chash cfv c1 wceq wa cv wbr wal cle wne syl adantr wb
cacycgr ccycls c0 wi w3a cc0 clt cpths cyclispth pthhashvtx breq2 3adant1
adantl mpbid umgrn1cycl 3adant3 necomd cwlks cycliswlk nn0red 1red ltlend
wlkcl 3ad2ant2 mpbir2and cn0 nn0lt10b cvv hasheq0 elv sylib 3com23 3expia
3syl alrimivv isacycgr1 mpbird ) AFGZBHIZJKZLZAUAGZDMZEMZAUBINZWCUCKZUDZE
ODOZWAWGDEVRVTWEWFVRWEVTWFVRWEVTUEZWCHIZUFKZWFWIWJJUGNZWKWIWLWJJPNZJWJQZW
EVTWMVRWEVTLWJVSPNZWMWEWOVTWEWCWDAUHINWOWDWCAUIWDWCABCUJRSVTWOWMTWEVSJWJP
UKUMUNULWIWJJVRWEWJJQVTWDWCAUOUPUQWEVRWLWMWNLTZVTWEWCWDAURINZWPWDWCAUSZWQ
WJJWQWJWDWCAVCZUTWQVAVBRVDVEWEVRWLWKTZVTWEWQWJVFGWTWRWSWJVGVNVDUNWKWFTDWC
VHVIVJVKVLVMVOVRWBWHTVTDAFEVPSVQ $.

$( A simple graph with two vertices is an acyclic graph. (Contributed by
BTernaryTau, 12-Oct-2023.) $)
acycgr2v $p |- ( ( G e. USGraph /\ ( # ` V ) = 2 ) ->
G e. AcyclicGraph ) $=
( vf vp cusgr wcel chash cfv c2 wceq wa cv wbr wne wex wn cxr cvv nexdv
cacycgr ccycls w3a clt usgrcyclgt2v 2re rexri fvexi hashxrcl ax-mp xrltne
c0 cvtx mp3an12 neneqd syl 3expib con2d imp wb isacycgr adantr mpbird ) A
FGZBHIZJKZLZAUAGZDMZEMZAUBINZVIULOZLZEPZDPQZVGVNDVGVMEVDVFVMQVDVMVFVDVKVL
VFQZVDVKVLUCJVEUDNZVPVJVIABCUEVQVEJJRGVERGZVQVEJOJUFUGBSGVRBAUMCUHBSUIUJJ
VEUKUNUOUPUQURUSTTVDVHVOUTVFDAFEVAVBVC $.
$}

${
$d f g p $. $d f G p $. $d f V p $.
prclisacycgr.1 $e |- V = ( Vtx ` G ) $.
$( A proper class (representing a null graph, see ~ vtxvalprc ) has the
property of an acyclic graph (see also ~ acycgr0v ). (Contributed by
BTernaryTau, 11-Oct-2023.) $)
prclisacycgr $p |- ( -. G e. _V ->
-. E. f E. p ( f ( Cycles ` G ) p /\ f =/= (/) ) ) $=
( vg cvv wcel wn c0 wceq cv ccycls cfv wbr wa wex cvtx df-br nexdv syl5eq
BTernaryTau marked this conversation as resolved.
Show resolved Hide resolved
wne fvprc br0 wss cwlks cpths cc0 chash df-cycls relmptopab cop cycliswlk
3imtr3i relssi eqeq1i g0wlk0 sylbi syl5sseq ss0 breq notbid 3syl intnanrd
wb mpbiri syl ) BGHIZCJKZALZDLZBMNZOZVJJUBZPZDQZAQIVHCBRNZJEBRUCUAVIVPAVI
VODVIVMVNVIVMIZVJVKJOZIZVJVKUDVIVLJUEVLJKZVRVTVEVIBUFNZVLJADVLWBVJVKFLUGN
OUHVKNVJUINVKNKPFADGBMAFDUJUKVMVJVKWBOVJVKULZVLHWCWBHVKVJBUMVJVKVLSVJVKWB
SUNUOVIVQJKWBJKCVQJEUPBUQURUSVLUTWAVMVSVJVKVLJVAVBVCVFVDTTVG $.
$}

$( (End of BTernaryTau's mathbox.) $)


Expand Down