Skip to content

Commit

Permalink
Prove spthcycl (#3568)
Browse files Browse the repository at this point in the history
* Prove funen1cnv

* Prove spthcycl
  • Loading branch information
BTernaryTau authored Oct 13, 2023
1 parent 0303bf9 commit fb01d49
Showing 1 changed file with 17 additions and 0 deletions.
17 changes: 17 additions & 0 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -501718,6 +501718,23 @@ have become an indirect lemma of the theorem in question (i.e. a lemma
YOUVPYLUVOUEYDXQXRYAUVMLYGKGUVNDXHYBTXSXT $.
$}

$( A walk is a trivial path if and only if it is both a simple path and a
cycle. (Contributed by BTernaryTau, 8-Oct-2023.) $)
spthcycl $p |- ( ( F ( Paths ` G ) P /\ F = (/) ) <->
( F ( SPaths ` G ) P /\ F ( Cycles ` G ) P ) ) $=
( cfv wbr c0 wceq wa wfun cc0 chash co c1 caddc adantr cvv wcel sylan syl
wn cpths cspths ccycls ctrls ccnv pthistrl cwlks pthiswlk c1o cen cvtx eqid
cfz wlkp ffund wlklenvp1 simp2d hasheq0 biimpar oveq1 0p1e1 syl6eq eqtrd wb
simp3d hashen1 biimpa syldan funen1cnv syl2an2r isspth biimpri fveq2 eqcoms
wlkv iscycl jca spthispth notnot wne cyclnspth com12 con3dimp sylan2 ancoms
nne sylib impbii ) BACUADEZBFGZHZBACUBDEZBACUCDEZHZWKWLWMWIBACUDDEZWJAUEIZW
LABCUFWIBACUGDEZWJWPABCUHZWQAIWJAUIUJEZWPWQJBKDZUMLCUKDZAABCXAXAULUNUOWQWJA
KDZMGZWSWQWJHZXBWTMNLZMWQXBXEGWJABCUPOXDWTJGZXEMGWQBPQZWJXFWQCPQZXGAPQZABCV
OZUQXGXFWJBPURUSRZXFXEJMNLMWTJMNUTVAVBSVCWQXCWSWQXIXCWSVDWQXHXGXIXJVEAPVFSV
GVHAVIVJRWLWOWPHABCVKVLVJWIWJJADWTADGZWMWIWQWJXLWRXDXFXLXKXLJWTJWTAVMVNSRWM
WIXLHABCVPVLVHVQWNWIWJWLWIWMABCVROWMWLWJWLWMWLTZTZWJWLVSWMXNHBFVTZTWJWMXOXM
XOWMXMABCWAWBWCBFWFWGWDWEVQWH $.

$( A non-trivial cycle in a simple graph has a length greater than 2.
(Contributed by BTernaryTau, 24-Sep-2023.) $)
usgrgt2cycl $p |- ( ( G e. USGraph /\ F ( Cycles ` G ) P /\ F =/= (/) ) ->
Expand Down

0 comments on commit fb01d49

Please sign in to comment.