Skip to content

Commit

Permalink
Comments wording as per remarks from @savask
Browse files Browse the repository at this point in the history
  • Loading branch information
tirix committed Apr 9, 2024
1 parent d6fbe47 commit 7eb414d
Showing 1 changed file with 12 additions and 11 deletions.
23 changes: 12 additions & 11 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -472220,7 +472220,7 @@ The sumset operation can be used for both group (additive) operations and
elgrplsmsn.4 $e |- ( ph -> G e. V ) $.
elgrplsmsn.5 $e |- ( ph -> A C_ B ) $.
elgrplsmsn.6 $e |- ( ph -> X e. B ) $.
$( Membership to a sumset with a singleton for a group operation.
$( Membership in a sumset with a singleton for a group operation.
(Contributed by Thierry Arnoux, 21-Jan-2024.) $)
elgrplsmsn $p |- ( ph -> ( Z e. ( A .(+) { X } )
<-> E. x e. A Z = ( x .+ X ) ) ) $=
Expand Down Expand Up @@ -472269,8 +472269,8 @@ The sumset operation can be used for both group (additive) operations and
elringlsm.5 $e |- ( ph -> G e. V ) $.
elringlsm.6 $e |- ( ph -> E C_ B ) $.
elringlsm.7 $e |- ( ph -> F C_ B ) $.
$( Membership to a sumset for a ring operation. (Contributed by Thierry
Arnoux, 20-Jan-2024.) $)
$( Membership in a product of two subsets of a ring. (Contributed by
Thierry Arnoux, 20-Jan-2024.) $)
elringlsm $p |- ( ph -> ( Z e. ( E .X. F )
<-> E. x e. E E. y e. F Z = ( x .x. y ) ) ) $=
( wcel wss co cv wceq wrex wb mgpbas mgpplusg lsmelvalx syl3anc ) AJKTHDU
Expand All @@ -472284,8 +472284,8 @@ The sumset operation can be used for both group (additive) operations and
ringlsmss.4 $e |- ( ph -> R e. Ring ) $.
ringlsmss.5 $e |- ( ph -> E C_ B ) $.
ringlsmss.6 $e |- ( ph -> F C_ B ) $.
$( Closure for the sumset multiplicative operation in a ring. (Contributed
by Thierry Arnoux, 20-Jan-2024.) $)
$( Closure of the product of two subsets of a ring. (Contributed by
Thierry Arnoux, 20-Jan-2024.) $)
ringlsmss $p |- ( ph -> ( E .X. F ) C_ B ) $=
( cmnd wcel wss co crg ringmgp syl mgpbas lsmssv syl3anc ) AGNOZEBPFBPEFD
QBPACROUDKCGISTLMBDEFGBCGIHUAJUBUC $.
Expand All @@ -472300,15 +472300,16 @@ The sumset operation can be used for both group (additive) operations and
lsmsnpridl.4 $e |- K = ( RSpan ` R ) $.
lsmsnpridl.5 $e |- ( ph -> R e. Ring ) $.
lsmsnpridl.6 $e |- ( ph -> X e. B ) $.
$( The sumset of a ring with a single element is the element's principal
ideal. (Contributed by Thierry Arnoux, 21-Jan-2024.) $)
$( The product of the ring with a single element is equal to the principal
ideal generated by that element. (Contributed by Thierry Arnoux,
21-Jan-2024.) $)
lsmsnpridl $p |- ( ph -> ( B .X. { X } ) = ( K ` { X } ) ) $=
( vx vy co cfv cv wcel cvv csn cmulr wceq wrex mgpbas eqid mgpplusg fvexi
cmgp a1i ssidd elgrplsmsn crg wb rspsnel syl2anc bitr4d eqrdv ) ANBGUAZDP
ZUSFQZANRZUTSVBORGCUBQZPUCOBUDZVBVASZAOBBVCDETGVBBCEIHUECVCEIVCUFZUGJETSA
ECUIIUHUJABUKMULACUMSGBSVEVDUNLMOBCVCVBFGHVFKUOUPUQUR $.

$( The sumset of a ring with a single element is a principal ideal.
$( The product of the ring with a single element is a principal ideal.
(Contributed by Thierry Arnoux, 21-Jan-2024.) $)
lsmsnidl $p |- ( ph -> ( B .X. { X } ) e. ( LPIdeal ` R ) ) $=
( vy csn co cfv wcel wceq wb clpidl cv wrex sneq fveq2d eqeq2d lsmsnpridl
Expand All @@ -472324,16 +472325,16 @@ The sumset operation can be used for both group (additive) operations and
lsmidl.5 $e |- ( ph -> R e. Ring ) $.
lsmidl.6 $e |- ( ph -> I e. ( LIdeal ` R ) ) $.
lsmidl.7 $e |- ( ph -> J e. ( LIdeal ` R ) ) $.
$( The sumset sum of two ideals is the ideal generated by their union.
$( The sum of two ideals is the ideal generated by their union.
(Contributed by Thierry Arnoux, 21-Jan-2024.) $)
lsmidllsp $p |- ( ph -> ( I .(+) J ) = ( K ` ( I u. J ) ) ) $=
( co cfv clsm crg wcel wceq syl crglmod rlmlsm syl5eq oveqd clmod rlmlmod
cun clidl lidlval crsp clspn rspval eqtri eqid lsmsp syl3anc eqtrd ) AEFC
NEFDUAOZPOZNZEFUGGOZACUSEFACDPOZUSIADQRZVBUSSKDQUBTUCUDAURUERZEDUHOZRFVER
UTVASAVCVDKDUFTLMUSVEEFGURDUIGDUJOURUKOJDULUMUSUNUOUPUQ $.

$( The sumset sum of two ideals is an ideal. (Contributed by Thierry
Arnoux, 21-Jan-2024.) $)
$( The sum of two ideals is an ideal. (Contributed by Thierry Arnoux,
21-Jan-2024.) $)
lsmidl $p |- ( ph -> ( I .(+) J ) e. ( LIdeal ` R ) ) $=
( cfv wcel wss syl lidlss cbs eqtri cun clidl lsmidllsp crglmod clmod crg
rlmlmod eqid unssd rlmbas lidlval crsp clspn rspval lspcl syl2anc eqeltrd
Expand Down

0 comments on commit 7eb414d

Please sign in to comment.