Skip to content

Commit

Permalink
mathbox: global minimization
Browse files Browse the repository at this point in the history
  • Loading branch information
benjub committed Jan 20, 2024
1 parent e2d69c2 commit 66ba8d0
Show file tree
Hide file tree
Showing 2 changed files with 93 additions and 94 deletions.
1 change: 1 addition & 0 deletions discouraged
Original file line number Diff line number Diff line change
Expand Up @@ -18179,6 +18179,7 @@ Proof modification of "bj-sb56" is discouraged (50 steps).
Proof modification of "bj-sbceqgALT" is discouraged (143 steps).
Proof modification of "bj-sbeqALT" is discouraged (44 steps).
Proof modification of "bj-sbidmOLD" is discouraged (41 steps).
Proof modification of "bj-sbievv" is discouraged (25 steps).
Proof modification of "bj-spcimdv" is discouraged (56 steps).
Proof modification of "bj-spcimdvv" is discouraged (56 steps).
Proof modification of "bj-spimtv" is discouraged (52 steps).
Expand Down
186 changes: 92 additions & 94 deletions set.mm
Original file line number Diff line number Diff line change
Expand Up @@ -530926,11 +530926,10 @@ proof is intuitionistic (use of ~ ax-3 comes from the unusual definition
(Revised by BJ, 26-Dec-2023.) $)
bj-ififc $p |-
( X e. if ( ph , A , B ) <-> if- ( ph , X e. A , X e. B ) ) $=
( vx cif wcel cv wif cab bj-df-ifc eleq2i cvv elex wa wn wo df-ifp adantl
eleq1 jaoi sylbi wceq biidd ifpbi123d elabg pm5.21nii bitri ) DABCFZGDAEH
ZBGZUJCGZIZEJZGZADBGZDCGZIZUIUNDAEBCKLUODMGZURDUNNURAUPOZAPZUQOZQUSAUPUQR
UTUSVBUPUSADBNSUQUSVADCNSUAUBUMUREDMUJDUCZAUKULAUPUQVCAUDUJDBTUJDCTUEUFUG
UH $.
( vx cif wcel cv wif cab bj-df-ifc eleq2i wa wn wo cvv df-ifp elex adantl
eleq1 jaoi sylbi wceq biidd ifpbi123d elab3 bitri ) DABCFZGDAEHZBGZUICGZI
ZEJZGADBGZDCGZIZUHUMDAEBCKLULUPEDUPAUNMZANZUOMZODPGZAUNUOQUQUTUSUNUTADBRS
UOUTURDCRSUAUBUIDUCZAUJUKAUNUOVAAUDUIDBTUIDCTUEUFUG $.
$}


Expand Down Expand Up @@ -531358,7 +531357,7 @@ Utility lemmas or strengthenings of theorems in the main part (biconditional
$( Closed form of ~ 2exbii . (Contributed by BJ, 6-May-2019.) $)
bj-2exbi $p |- ( A. x A. y ( ph <-> ps ) ->
( E. x E. y ph <-> E. x E. y ps ) ) $=
( wb wal wex exbi alimi syl ) ABEDFZCFADGZBDGZEZCFLCGMCGEKNCABDHILMCHJ $.
( wb wal wex exbi alexbii ) ABEDFADGBDGCABDHI $.

$( Closed form of ~ 3exbii . (Contributed by BJ, 6-May-2019.) $)
bj-3exbi $p |- ( A. x A. y A. z ( ph <-> ps ) ->
Expand Down Expand Up @@ -532297,7 +532296,7 @@ standard proof of the implication in modal logic (B5 ` => ` 4). Its dual
nonfreeness implies the "exists" form of nonfreeness. (Contributed by BJ,
9-Dec-2023.) $)
bj-wnfenf $p |- ( ( E. x ph -> A. x ps ) -> A. x ( E. x ph -> ps ) ) $=
( wex wal wi bj-wnf1 sp imim2i sylg ) ACDZBCEZFZMKBFCABCGLBKBCHIJ $.
( wex wal wi bj-wnf1 bj-19.21bit sylg ) ACDZBCEFZKJBFCABCGJBCHI $.


$(
Expand Down Expand Up @@ -532585,8 +532584,8 @@ quantifiers appear (since they typically require ~ ax-10 to work with),
this could also be proved from ~ bj-nnfim , ~ bj-nnfe1 and ~ bj-nnfa1 .
(Contributed by BJ, 9-Dec-2023.) $)
bj-wnfnf $p |- F// x ( E. x ph -> A. x ps ) $=
( wex wal wi wnnf wa bj-wnf2 bj-wnf1 pm3.2i df-bj-nnf mpbir ) ACDBCEFZCGNCD
NFZNNCEFZHOPABCIABCJKNCLM $.
( wex wal wi wnnf bj-wnf2 bj-wnf1 df-bj-nnf mpbir2an ) ACDBCEFZCGLCDLFLLCEF
ABCHABCILCJK $.

$( A variable is nonfree in a formula if and only if it is nonfree in its
negation. The foward implication is intuitionistically valid (and that
Expand Down Expand Up @@ -533638,7 +533637,8 @@ References are made to the second edition (1927, reprinted 1963) of
bj-sbievv.nfy $e |- F/ y ph $.
bj-sbievv.is $e |- ( x = y -> ( ph <-> ps ) ) $.
$( Version of ~ sbie with a second nonfreeness hypothesis and shorter
proof. (Contributed by BJ, 18-Jul-2023.) $)
proof. (Contributed by BJ, 18-Jul-2023.)
(Proof modification is discouraged.) $)
bj-sbievv $p |- ( [ y / x ] ph <-> ps ) $=
( wsb weq wi wal sb6f equsal bitri ) ACDHCDIAJCKBACDFLABCDEGMN $.
$}
Expand Down Expand Up @@ -535026,20 +535026,20 @@ FOL part ( ~ bj-ru0 ) and then two versions ( ~ bj-ru1 and ~ bj-ru ).
application of ~ ax-rep . (Contributed by BJ, 6-Oct-2018.) $)
bj-snsetex $p |- ( A e. V -> { x | { x } e. A } e. _V ) $=
( vy vz vt vu wcel cv csn cvv wex wi wceq syl wal wb wa wsb bitri elisset
cab eleq2 abbidv eleq1 biimpd eximi 19.35 biimpi com12 ax-rep 19.3v sbbii
csb wsbc sbsbc sbceq2g elv bj-csbsn eqeq2i eqtr2 vex sylan2b syl2anb gen2
sneqr nfa1 mo mpg bj-sbel1 eleq1i df-clab anbi2i eleq1a eqcoms imdistanri
mpbir impac impbii exbii snex isseti 19.42v mpbiran2 3bitr4ri bibi2i mpbi
albii dfcleq issetri ax5e ) BCHZAIJZBHZAUBZKHZDLZWPWLWMDIZHZAUBZKHZWPMZDL
ZWQWLWRBNZDLXCDBCUAXDXBDXDWTWONZXBXDWSWNAWRBWMUCUDXEXAWPWTWOKUEUFOUGOXAXC
WQMDXCXADPZWQXCXFWQMXAWPDUHUIUJEWTEIZWTNZELFIZXGHZXIWTHZQZFPZELZXJGIZWRHZ
XOXIJZNZEPZRZGLZQZFPZELZXNXSXIXGNZMFPELZYDGXRDEFGUKYFXSXSFESZRYEMZEPFPYHF
EXSXRXRFESZYEYGXREULZXSXRFEYJUMYIXRXOXGJZNZYEYIXOFXGXQUNZNZYLYIXRFXGUOZYN
XRFEUPYOYNQEFXGXOXQKUQURTYMYKXOFXGUSUTTXRYLRXQYKNYEXOXQYKVAXIXGFVBVFOVCVD
VEXSFEXREVGVHVQVIYCXMEYBXLFYAXKXJWSAFSZXQWRHZXKYAYPAXIWMUNZWRHYQAFWMWRVJY
RXQWRAXIUSVKTWSFAVLYAYQXRRZGLZYQXTYSGXTXPXRRZYSXSXRXPYJVMUUAYSXRXPYQXPYQM
XQXOXPXQXONYQXOWRXQVNUJVOVPYQXRXPXQWRXOVNVRVSTVTYTYQXRGLGXQXIWAWBYQXRGWCW
DTWEWFWHVTWGXHXMEFXGWTWIVTVQWJVIOWPDWKO $.
cab eleq2 abbidv eleq1 biimpd eximi bj-eximcom com12 19.3v sbbii csb wsbc
ax-rep sbsbc sbceq2g elv bj-csbsn eqeq2i eqtr2 sneqr sylan2b syl2anb gen2
vex nfa1 mo mpbir bj-sbel1 eleq1i df-clab anbi2i eleq1a eqcoms imdistanri
impac impbii exbii snex isseti 19.42v mpbiran2 3bitr4ri bibi2i albii mpbi
mpg dfcleq issetri ax5e ) BCHZAIJZBHZAUBZKHZDLZWOWKWLDIZHZAUBZKHZWOMZDLZW
PWKWQBNZDLXBDBCUAXCXADXCWSWNNZXAXCWRWMAWQBWLUCUDXDWTWOWSWNKUEUFOUGOWTXBWP
MDXBWTDPWPWTWODUHUIEWSEIZWSNZELFIZXEHZXGWSHZQZFPZELZXHGIZWQHZXMXGJZNZEPZR
ZGLZQZFPZELZXLXQXGXENZMFPELZYBGXPDEFGUNYDXQXQFESZRYCMZEPFPYFFEXQXPXPFESZY
CYEXPEUJZXQXPFEYHUKYGXPXMXEJZNZYCYGXMFXEXOULZNZYJYGXPFXEUMZYLXPFEUOYMYLQE
FXEXMXOKUPUQTYKYIXMFXEURUSTXPYJRXOYINYCXMXOYIUTXGXEFVEVAOVBVCVDXQFEXPEVFV
GVHWGYAXKEXTXJFXSXIXHWRAFSZXOWQHZXIXSYNAXGWLULZWQHYOAFWLWQVIYPXOWQAXGURVJ
TWRFAVKXSYOXPRZGLZYOXRYQGXRXNXPRZYQXQXPXNYHVLYSYQXPXNYOXNYOMXOXMXNXOXMNYO
XMWQXOVMUIVNVOYOXPXNXOWQXMVMVPVQTVRYRYOXPGLGXOXGVSVTYOXPGWAWBTWCWDWEVRWFX
FXKEFXEWSWHVRVHWIWGOWODWJO $.
$}

${
Expand Down Expand Up @@ -535506,9 +535506,9 @@ the projections (see ~ df-bj-pr1 and ~ df-bj-pr2 ). (Contributed by BJ,
bj-pr22val $p |- pr2 (| A ,, B |) = B $=
( bj-c2uple bj-cpr2 bj-c1upl c1o csn bj-ctag cxp cun c0 df-bj-2upl bj-pr2eq
wceq ax-mp bj-pr2un eqtri cif bj-pr2val 3eqtri df-bj-1upl 1n0 iffalsei eqid
nesymi iftruei uneq12i uncom un0 ) ABCZDZAEZDZFGBHIZDZJZKBJZBUKULUNJZDZUPUJ
URNUKUSNABLUJURMOULUNPQUMKUOBUMKGAHIZDZKFNZAKRKULUTNUMVANAUAULUTMOKASVBAKFK
UBUEUCTUOFFNZBKRBFBSVCBKFUDUFQUGUQBKJBKBUHBUIQT $.
nesymi iftruei uneq12i 0un ) ABCZDZAEZDZFGBHIZDZJZKBJBUJUKUMJZDZUOUIUPNUJUQ
NABLUIUPMOUKUMPQULKUNBULKGAHIZDZKFNZAKRKUKURNULUSNAUAUKURMOKASUTAKFKUBUEUCT
UNFFNZBKRBFBSVABKFUDUFQUGBUHT $.

$( Sethood of the second projection. (Contributed by BJ, 6-Oct-2018.) $)
bj-pr2ex $p |- ( A e. V -> pr2 A e. _V ) $=
Expand Down Expand Up @@ -535548,14 +535548,14 @@ sethood hypotheses (compare ~ opth ). (Contributed by BJ, 6-Oct-2018.) $)
values of n. (Contributed by BJ, 21-Apr-2019.) $)
bj-2upln1upl $p |- (| A ,, B |) =/= (| C |) $=
( bj-c1upl cdif wne wpss c1o csn bj-ctag cxp cun wss difeq2i cin wceq ax-mp
c0 mpbi 0pss bj-c2uple xpundi bj-disjsn01 xpdisj1 eqtr3i disjdif2 1oex snnz
incom wa bj-tagn0 pm3.2i xpnz eqnetri eqnetrri mpbir ssun2 sscon df-bj-2upl
ssdif sstri df-bj-1upl uneq1i eqtri difeq1i sseqtrri psssstr mp2an difn0 )
ABUAZCDZEZRFZVJVKFRVLGZVMRHIZBJZKZRIZAJZKZVRCJZKZLZEZGZWDVLMVNWEWDRFVQVRVSW
ALZKZEZWDRWGWCVQVRVSWAUBNWHVQRVQWGOZRPWHVQPWGVQOZWIRWGVQUIVRVOORPWJRPUCVRVO
WFVPUDQUEVQWGUFQVORFZVPRFZUJVQRFWKWLHUGUHBUKULVOVPUMSUNUOWDTUPWDVJWBEZVLWDV
TVQLZWBEZWMWDVQWBEZWOWBWCMWDWPMWBVTUQWBWCVQURQVQWNMWPWOMVQVTUQVQWNWBUTQVAVJ
WNWBVJADZVQLWNABUSWQVTVQAVBVCVDVEVFVKWBVJCVBNVFRWDVLVGVHVLTSVJVKVIQ $.
c0 mpbi 0pss bj-c2uple xpundi incom xp01disjl eqtr3i disjdif2 1oex bj-tagn0
wa snnz xpnz eqnetri eqnetrri mpbir ssun2 sscon ssdif df-bj-2upl df-bj-1upl
pm3.2i sstri uneq1i eqtri difeq1i sseqtrri psssstr mp2an difn0 ) ABUAZCDZEZ
RFZVIVJFRVKGZVLRHIZBJZKZRIZAJZKZVQCJZKZLZEZGZWCVKMVMWDWCRFVPVQVRVTLZKZEZWCR
WFWBVPVQVRVTUBNWGVPRVPWFOZRPWGVPPWFVPOWHRWFVPUCWEVOUDUEVPWFUFQVNRFZVORFZUIV
PRFWIWJHUGUJBUHUTVNVOUKSULUMWCTUNWCVIWAEZVKWCVSVPLZWAEZWKWCVPWAEZWMWAWBMWCW
NMWAVSUOWAWBVPUPQVPWLMWNWMMVPVSUOVPWLWAUQQVAVIWLWAVIADZVPLWLABURWOVSVPAUSVB
VCVDVEVJWAVICUSNVERWCVKVFVGVKTSVIVJVHQ $.


$(
Expand Down Expand Up @@ -535797,8 +535797,8 @@ sethood hypotheses (compare ~ opth ). (Contributed by BJ, 6-Oct-2018.) $)
related by the membership relation (i.e., the first is an element of the
second) and the second is a set (hence so is the first). TODO: move to
Main after reordering to have ~ brrelex2i available. Check if it is
shorter to prove ~ bj-epelg first or ~ bj-epelb first. (Contributed by BJ,
14-Jul-2023.) $)
shorter to prove ~ bj-epelg first or ~ bj-epelb first. (Contributed by
BJ, 14-Jul-2023.) $)
bj-epelb $p |- ( A _E B <-> ( A e. B /\ B e. _V ) ) $=
( cep wbr cvv wcel wa rele brrelex2i pm4.71i epelg pm5.32ri bitri ) ABCDZNB
EFZGABFZOGNOABCHIJONPABEKLM $.
Expand Down Expand Up @@ -535982,8 +535982,8 @@ Moore collections ( ~ df-mre ), topologies ( ~ df-top ), pi-systems, rings of
~ bj-restsnss2 . TODO: this is ~ restsn . (Contributed by BJ,
27-Apr-2021.) $)
bj-restsn0 $p |- ( A e. V -> ( { (/) } |`t A ) = { (/) } ) $=
( wcel c0 wss wa csn crest co wceq 0ss jctr bj-restsnss2 syl ) ABCZODAEZFDG
ZAHIQJOPAKLABDMN $.
( wcel c0 wss csn crest co wceq 0ss bj-restsnss2 mpan2 ) ABCDAEDFZAGHMIAJAB
DKL $.

$( Special case of ~ bj-restsn , ~ bj-restsnss , and ~ bj-rest10 .
(Contributed by BJ, 27-Apr-2021.) $)
Expand Down Expand Up @@ -536108,18 +536108,17 @@ Moore collections ( ~ df-mre ), topologies ( ~ df-top ), pi-systems, rings of
~ restuni and ~ restuni2 . (Contributed by BJ, 27-Apr-2021.) $)
bj-restuni $p |-
( ( X e. V /\ A e. W ) -> U. ( X |`t A ) = ( U. X i^i A ) ) $=
( vx vy vz wcel wa cuni cin cv wex eluni bicomi anbi1i 19.42v bitri exbii
3bitri crest co wceq wrex elrest anbi2d exbidv wb a1i df-rex anbi2i excom
an12 eqimss sseld imdistanri eqimss2 impbii vex inex1 isseti biantru elin
biid bianass ancom 19.41v 3bitr4g bitrd syl5bb eqrdv ) DBHACHIZEDAUAUBZJZ
DJZAKZELZVNHVQFLZHZVRVMHZIZFMZVLVQVPHZFVQVMNVLWBVSVRGLZAKZUCZGDUDZIZFMZWC
VLWAWHFVLVTWGVSGVRADBCUEUFUGVLVQWDHZWDDHZIZGMZVQAHZIZVQVOHZWNIZWIWCWOWQUH
VLWMWPWNWPWMGVQDNOPUIWIVSWKWFIZIZGMZFMWSFMZGMZWOWHWTFWHVSWRGMZIZWTWGXCVSW
FGDUJUKWTXDVSWRGQORSWSFGULXBWLWNIZGMWOXAXEGXAWKVSWFIZIZFMWKXFFMZIZXEWSXGF
VSWKWFUMSWKXFFQXIWKWJWNIZIWKWJIZWNIXEXHXJWKXHVQWEHZWFIZFMXLWFFMZIZXJXFXMF
XFXMWFVSXLWFVRWEVQVRWEUNUOUPWFXLVSWFWEVRVQWEVRUQUOUPURSXLWFFQXOXLXJXLXOXN
XLFWEWDAGUSUTVAVBOVQWDAVCRTUKXJWJWNWKXJVDVEXKWLWNWKWJVFPTTSWLWNGVGRTVQVOA
VCVHVIVJVK $.
( vx vy vz wcel wa cuni cin cv wex eluni bicomi 19.42v bitri exbii 3bitri
sseld crest co wceq wrex elrest anbi2d exbidv wb anbi1i a1i df-rex anbi2i
excom an12 eqimss imdistanri eqimss2 impbii vex inex1 isseti biantru elin
bianassc 19.41v 3bitr4g bitrd syl5bb eqrdv ) DBHACHIZEDAUAUBZJZDJZAKZELZV
LHVOFLZHZVPVKHZIZFMZVJVOVNHZFVOVKNVJVTVQVPGLZAKZUCZGDUDZIZFMZWAVJVSWFFVJV
RWEVQGVPADBCUEUFUGVJVOWBHZWBDHZIZGMZVOAHZIZVOVMHZWLIZWGWAWMWOUHVJWKWNWLWN
WKGVODNOUIUJWGVQWIWDIZIZGMZFMWQFMZGMZWMWFWRFWFVQWPGMZIZWRWEXAVQWDGDUKULWR
XBVQWPGPOQRWQFGUMWTWJWLIZGMWMWSXCGWSWIVQWDIZIZFMWIXDFMZIXCWQXEFVQWIWDUNRW
IXDFPXFWHWLWIXFVOWCHZWDIZFMXGWDFMZIZWHWLIZXDXHFXDXHWDVQXGWDVPWCVOVPWCUOTU
PWDXGVQWDWCVPVOWCVPUQTUPURRXGWDFPXJXGXKXGXJXIXGFWCWBAGUSUTVAVBOVOWBAVCQSV
DSRWJWLGVEQSVOVMAVCVFVGVHVI $.
$}

$( The union of an elementwise intersection on a family of sets by a subset
Expand Down Expand Up @@ -536869,9 +536868,8 @@ is a Moore collection ( ~ bj-snmoore ), this can also be stated as
bj-brab2a1.2 $e |- R = { <. x , y >. | ph } $.
$( "Unbounded" version of ~ brab2a . (Contributed by BJ, 25-Dec-2023.) $)
bj-brab2a1 $p |- ( A R B <-> ( ( A e. _V /\ B e. _V ) /\ ps ) ) $=
( wbr cvv wcel wa biid copab cv vex pm3.2i biantrur opabbii eqtri brab2a
bitri ) EFGJZUDEKLFKLMBMUDNABCDEFKKGHGACDOCPKLZDPKLZMZAMZCDOIAUHCDUGAUEUF
CQDQRSTUAUBUC $.
( cvv copab cv wcel wa vex pm3.2i biantrur opabbii eqtri brab2a ) ABCDEFJ
JGHGACDKCLJMZDLJMZNZANZCDKIAUDCDUCAUAUBCODOPQRST $.
$}


Expand Down Expand Up @@ -536937,7 +536935,7 @@ both are sets (all three classes are equal, so they all belong to ` V ` ,
$( If the intersection of two classes is a set, then these classes are equal
if and only if one is an element of the singleton formed on the other.
Stronger form of ~ elsng and ~ elsn2g (which could be proved from it).
(Contributed by BJ, 20-Jan-2024.). $)
(Contributed by BJ, 20-Jan-2024.). (Contributed by BJ, 20-Jan-2024.) $)
bj-elsn0 $p |- ( ( A i^i B ) e. V -> ( A e. { B } <-> A = B ) ) $=
( cin wcel csn wceq elsni wi wa cvv bj-inexeqex simpl elsng biimprd 3syl ex
pm2.43d impbid2 ) ABDCEZABFEZABGZABHTUBUATUBUBUAIZTUBJAKEZBKEZJUDUCABCLUDUE
Expand Down Expand Up @@ -537115,15 +537113,15 @@ both are sets (all three classes are equal, so they all belong to ` V ` ,
(Contributed by BJ, 22-Jun-2019.) $)
bj-elid6 $p |- ( B e. ( _I |` A ) <->
( B e. ( A X. A ) /\ ( 1st ` B ) = ( 2nd ` B ) ) ) $=
( cid cres wcel cvv cxp wa c1st cfv c2nd wceq df-res elin2 1st2nd2 wb eleq1
adantl opelxp bitri biancomi bj-elid4 pm5.32i cop pm4.71ri simpl a1i syl5ib
jcad elex anim2i impbid1 adantr 3bitr4g bicomd 3bitrd pm5.32da simpr impbii
wi ancri syl6bb syl5bb pm5.32ri ) BCADZEZBAFGZEZBCEZHZBAAGZEZBIJZBKJZLZHZVF
VHVIBCVGVECAMNUAVJVHVOHVPVHVIVOBAFUBUCVOVHVLVHBVMVNUDZLZVHHZVOVLVHVRBAFOUEV
OVSVRVLHZVLVOVRVHVLVOVRHZVHVQVGEZVQVKEZVLVRVHWBPVOBVQVGQRWAVMAEZVNFEZHZWDVN
AEZHZWBWCVOWFWHPVRVOWFWHVOWFWDWGWFWDUTVOWDWEUFZUGWFWDVOWGWIVMVNAQUHUIWGWEWD
VNAUJUKULUMVMVNAFSVMVNAASUNVRWCVLPVOVRVLWCBVQVKQUORUPUQVTVLVRVLURVLVRBAAOVA
USVBVCVDTT $.
( cid cres wcel cvv cxp wa c1st cfv c2nd wceq df-res elin2 biancomi 1st2nd2
wb eleq1 adantl opelxp bj-elid4 pm5.32i cop pm4.71ri wi simpl a1i jcad elex
syl5ib anim2i impbid1 adantr bicomd 3bitrd simpr ancri impbii syl6bb syl5bb
3bitr4g pm5.32da pm5.32ri 3bitri ) BCADZEZBAFGZEZBCEZHVHBIJZBKJZLZHBAAGZEZV
LHVFVHVIBCVGVECAMNOVHVIVLBAFUAUBVLVHVNVHBVJVKUCZLZVHHZVLVNVHVPBAFPUDVLVQVPV
NHZVNVLVPVHVNVLVPHZVHVOVGEZVOVMEZVNVPVHVTQVLBVOVGRSVSVJAEZVKFEZHZWBVKAEZHZV
TWAVLWDWFQVPVLWDWFVLWDWBWEWDWBUEVLWBWCUFZUGWDWBVLWEWGVJVKARUJUHWEWCWBVKAUIU
KULUMVJVKAFTVJVKAATVAVPWAVNQVLVPVNWABVOVMRUNSUOVBVRVNVPVNUPVNVPBAAPUQURUSUT
VCVD $.

$( Characterization of the elements of the diagonal of a Cartesian square.
(Contributed by BJ, 22-Jun-2019.) $)
Expand Down Expand Up @@ -538243,39 +538241,39 @@ singleton on a couple (with disjoint domain) at a point in the domain
( B ` ( f ` n ) ) ) ) ` ( # ` I ) ) ) ) ) $=
( vt cfv c1 cv wceq wa wcel cfn adantr vx vy vz cfinsum co cop wf1o chash
cfz cplusg cn cmpt cseq wex cn0 wrex cio df-ov c2nd cdm c1st cbs wf copab
ccmn cvv df-bj-finsum a1i wb simpr fveq2d fex syl2anc op1stg eqtrd op2ndg
wi dmeqd fdmd f1oeq3 biimpd ad2antll adantrd eqidd simprl adantrr simprrl
fveq1d mpteq2dva seqeq123d simprr jca hashfz1 eqcomd ad2antrl fzfid 19.8a
cvv df-bj-finsum wb wi simpr fveq2d fex syl2anc op1stg eqtrd op2ndg dmeqd
ccmn fdmd f1oeq3 biimpd ad2antll adantrd simprl adantrr simprrl mpteq2dva
eqidd fveq1d seqeq123d simprr anim1ci hashfz1 eqcomd ad2antrl fzfid 19.8a
hasheqf1oi sylc 3eqtrd sylan2 fveq12d eqeq2d impancom com12 biimprd simpl
jcad tru jctir syl adantlrr impcom syl12anc impbid ex imp exbidv rexbidva
wtru iotabidv eleq1 feq2 anbi12d ceqsexgv mpbir2and exsimpr df-rex sylibr
fveq2 feq3d rexbidv feq1 anbi2d opelopabg iotaex fvmptd syl5eq ) ABCUDUEB
CUFZUDMNEOZUIUEZGDOZUGZHOZGUHMZBUJMZFUKFOZUUBMZCMZULZNUMZMZPZQZDUNZEUOUPZ
HUQZBCUDURAUAYSUUAUAOZUSMZUTZUUBUGZUUDYTUURVAMZUJMZFUKUUHUUSMZULZNUMZMZPZ
QZDUNZEUOUPZHUQZUUQUBOZVERZLOZUVMVBMZUCOZVCZLSUPZQZUBUCVDZUDVFUDUAUWAUVLU
LPAUAUBUCLDEFHVGVHAUURYSPZQZUVKUUPHUWCUVJUUOEUOUWCYTUORZQUVIUUNDUWCUWDUVI
UUNVIZUWCUVBBPZUUSCPZUUTGPZUWDUWEVQUWCUVBYSVAMZBUWCUURYSVAAUWBVJZVKUWCBVE
RZCVFRZUWIBPAUWKUWBITZAUWLUWBAGBVBMZCVCZGSRZUWLKJGUWNSCVLVMZTZBCVEVFVNVMV
OUWCUUSYSUSMZCUWCUURYSUSUWJVKUWCUWKUWLUWSCPUWMUWRBCVEVFVPVMVOZUWCUUTCUTZG
UWCUUSCUWTVRAUXAGPUWBAGUWNCKVSTVOUWFUWGUWHQZQZUWDUWEUXCUWDQZUVIUUNUXDUVIU
UCUUMUXCUVIUUCVQUWDUXCUVAUUCUVHUWHUVAUUCVQUWFUWGUWHUVAUUCUUTGUUAUUBVTZWAW
BWCTUVIUXDUUMUVAUXDUVHUUMUVAUXDQZUVHUUMUXFUVGUULUUDUXFYTUUEUVFUUKUXFUVCUU
FUVEUUJNNUXFNWDUVAUXCUVCUUFPUWDUVAUXCQZUVBBUJUVAUWFUXBWEVKWFUVAUXCUVEUUJP
UWDUXGFUKUVDUUIUXGUUGUKRZQUUHUUSCUXGUWGUXHUVAUWFUWGUWHWGTWHWIWFWJUXDUVAUW
DUWHQZYTUUEPZUXDUWDUWHUXCUWDVJUXCUWHUWDUWFUWGUWHWKZTWLUVAUXIQZYTUUAUHMZUU
TUHMZUUEUWDYTUXMPUVAUWHUWDUXMYTYTWMWNWOUXLUUASRUVADUNZUXMUXNPUXLNYTWPUVAU
XOUXIUVADWQTUUAUUTDSWRWSUXLUUTGUHUVAUWDUWHWKVKWTZXAXBXCWAXDXEXHUXDUUNUVAU
VHUXDUUCUVAUUMUXCUUCUVAVQZUWDUWHUXQUWFUWGUWHUVAUUCUXEXFWBTZWCUUNUXDUVHUUC
UXDUUMUVHUUCUXDQZUUMUVHUXSUULUVGUUDUXSUUEYTUUKUVFUXSUUFUVCUUJUVENNUXSNWDU
XSBUVBUJUXSUWFXTQZBUVBPUXCUXTUUCUWDUXCUWFXTUWFUXBXGXIXJWOUXTUVBBUWFXTXGWN
XKVKUXSFUKUUIUVDUUCUXCUXHUUIUVDPUWDUUCUXCQZUXHQUUHCUUSUYACUUSPZUXHUXBUYBU
UCUWFUXBUUSCUWGUWHXGWNWBTWHXLWIWJUXSYTUUEUXSUVAUWDUWHUXJUXDUUCUVAUXRXMUUC
UXCUWDWKUXCUWHUUCUWDUXKWOUXPXNWNXBXCWAXDXEXHXOXPXNXQXRXSYAAYSUWARZUWKUVOU
WNCVCZLSUPZIAUVOSRZUYDQZLUNZUYEAUVOGPZUYGQLUNZUYHAUYJUWPUWOJKAUWPUYJUWPUW
OQZVIJUYGUYKLGSUYIUYFUWPUYDUWOUVOGSYBUVOGUWNCYCYDYEXKYFUYIUYGLYGXKUYDLSYH
YIAUWKUWLUYCUWKUYEQZVIIUWQUVTUWKUVOUWNUVQVCZLSUPZQUYLUBUCBCVEVFUVMBPZUVNU
WKUVSUYNUVMBVEYBUYOUVRUYMLSUYOUVPUWNUVQUVOUVMBVBYJYKYLYDUVQCPZUYNUYEUWKUY
PUYMUYDLSUVOUWNUVQCYMYLYNYOVMYFUUQVFRAUUPHYPVHYQYR $.
fveq2 feq3d rexbidv feq1 anbi2d opelopabg iotaex a1i fvmptd2 syl5eq ) ABC
UDUEBCUFZUDMNEOZUIUEZGDOZUGZHOZGUHMZBUJMZFUKFOZUUBMZCMZULZNUMZMZPZQZDUNZE
UOUPZHUQZBCUDURAUAYSUUAUAOZUSMZUTZUUBUGZUUDYTUURVAMZUJMZFUKUUHUUSMZULZNUM
ZMZPZQZDUNZEUOUPZHUQUUQUBOZVQRZLOZUVLVBMZUCOZVCZLSUPZQZUBUCVDZUDVEUAUBUCL
DEFHVFAUURYSPZQZUVKUUPHUWBUVJUUOEUOUWBYTUORZQUVIUUNDUWBUWCUVIUUNVGZUWBUVB
BPZUUSCPZUUTGPZUWCUWDVHUWBUVBYSVAMZBUWBUURYSVAAUWAVIZVJUWBBVQRZCVERZUWHBP
AUWJUWAITZAUWKUWAAGBVBMZCVCZGSRZUWKKJGUWMSCVKVLZTZBCVQVEVMVLVNUWBUUSYSUSM
ZCUWBUURYSUSUWIVJUWBUWJUWKUWRCPUWLUWQBCVQVEVOVLVNZUWBUUTCUTZGUWBUUSCUWSVP
AUWTGPUWAAGUWMCKVRTVNUWEUWFUWGQZQZUWCUWDUXBUWCQZUVIUUNUXCUVIUUCUUMUXBUVIU
UCVHUWCUXBUVAUUCUVHUWGUVAUUCVHUWEUWFUWGUVAUUCUUTGUUAUUBVSZVTWAWBTUVIUXCUU
MUVAUXCUVHUUMUVAUXCQZUVHUUMUXEUVGUULUUDUXEYTUUEUVFUUKUXEUVCUUFUVEUUJNNUXE
NWGUVAUXBUVCUUFPUWCUVAUXBQZUVBBUJUVAUWEUXAWCVJWDUVAUXBUVEUUJPUWCUXFFUKUVD
UUIUXFUUGUKRZQUUHUUSCUXFUWFUXGUVAUWEUWFUWGWETWHWFWDWIUXCUVAUWCUWGQZYTUUEP
ZUXBUWGUWCUWEUWFUWGWJZWKUVAUXHQZYTUUAUHMZUUTUHMZUUEUWCYTUXLPUVAUWGUWCUXLY
TYTWLWMWNUXKUUASRUVADUNZUXLUXMPUXKNYTWOUVAUXNUXHUVADWPTUUAUUTDSWQWRUXKUUT
GUHUVAUWCUWGWJVJWSZWTXAXBVTXCXDXGUXCUUNUVAUVHUXCUUCUVAUUMUXBUUCUVAVHZUWCU
WGUXPUWEUWFUWGUVAUUCUXDXEWATZWBUUNUXCUVHUUCUXCUUMUVHUUCUXCQZUUMUVHUXRUULU
VGUUDUXRUUEYTUUKUVFUXRUUFUVCUUJUVENNUXRNWGUXRBUVBUJUXRUWEXSQZBUVBPUXBUXSU
UCUWCUXBUWEXSUWEUXAXFXHXIWNUXSUVBBUWEXSXFWMXJVJUXRFUKUUIUVDUUCUXBUXGUUIUV
DPUWCUUCUXBQZUXGQUUHCUUSUXTCUUSPZUXGUXAUYAUUCUWEUXAUUSCUWFUWGXFWMWATWHXKW
FWIUXRYTUUEUXRUVAUWCUWGUXIUXCUUCUVAUXQXLUUCUXBUWCWJUXBUWGUUCUWCUXJWNUXOXM
WMXAXBVTXCXDXGXNXOXMXPXQXRXTAYSUVTRZUWJUVNUWMCVCZLSUPZIAUVNSRZUYCQZLUNZUY
DAUVNGPZUYFQLUNZUYGAUYIUWOUWNJKAUWOUYIUWOUWNQZVGJUYFUYJLGSUYHUYEUWOUYCUWN
UVNGSYAUVNGUWMCYBYCYDXJYEUYHUYFLYFXJUYCLSYGYHAUWJUWKUYBUWJUYDQZVGIUWPUVSU
WJUVNUWMUVPVCZLSUPZQUYKUBUCBCVQVEUVLBPZUVMUWJUVRUYMUVLBVQYAUYNUVQUYLLSUYN
UVOUWMUVPUVNUVLBVBYIYJYKYCUVPCPZUYMUYDUWJUYOUYLUYCLSUVNUWMUVPCYLYKYMYNVLY
EUUQVERAUUPHYOYPYQYR $.

$(
@( Value of a finite sum. (Contributed by BJ, 9-Jun-2019.) @)
Expand Down

0 comments on commit 66ba8d0

Please sign in to comment.