Skip to content

Commit

Permalink
Intuitionize the rest of the section "Definition and basic properties…
Browse files Browse the repository at this point in the history
… of unital rings" (#4545)

* copy ringlz and ringrz from set.mm to iset.mm

* copy ringsrg from set.mm to iset.mm

* copy ring1eq0 from set.mm to iset.mm

* add ring1ne0 to mmil.html

* copy ringinvnz1ne0 from set.mm to iset.mm

* copy ringinvnzdiv from set.mm to iset.mm

* Add ringnegl and rngnegr to iset.mm

Copied from set.mm with the only change being to the comments, to avoid
references to theorems not in iset.mm.

* copy ringmneg1 from set.mm to iset.mm

* copy ringmneg2 from set.mm to iset.mm

* copy ringm2neg from set.mm to iset.mm

* copy ringsubdi from set.mm to iset.mm

* copy rngsubdir from set.mm to iset.mm

* copy mulgass2 from set.mm to iset.mm

* Add grppropstrg to iset.mm

This is grppropstr from set.mm with an additional set existence
condition.  The proof is based on the set.mm proof.

* Add ring1 to iset.mm

Stated as in set.mm.  The proof needs a decent amount of intuitionizing
but is basically the set.mm proof.

* copy ringn0 from set.mm to iset.mm

The only change is to the comment, to reflect not empty versus
inhabited.

* add ringlghm , ringrghm to mmil.html

* add finSupp and gsum theorems to mmil.html

This is gsummulc1 , gsummulc2 , gsummgp0 , and gsumdixp

* Add structure product theorems to mmil.html

This is prdsmgp , prdsmulrcl , prdsringd , prdscrngd , and prds1

* Add structure power theorems to mmil.html

This is pwsring , pws1 , pwscrng , and pwsmgp

* add imasring to mmil.html

* add qusring2 to mmil.html

* add crngbinom to mmil.html
  • Loading branch information
jkingdon authored Jan 9, 2025
1 parent b0d7165 commit 3fd6f0e
Show file tree
Hide file tree
Showing 2 changed files with 362 additions and 3 deletions.
301 changes: 301 additions & 0 deletions iset.mm
Original file line number Diff line number Diff line change
Expand Up @@ -145375,6 +145375,23 @@ an algebraic structure formed from a base set of elements (notated
UEUCHSSUFUGUDUEDTOUAUB $.
$}

${
$d B x y $. $d K x y $. $d L x y $. $d V x y $.
grppropstr.b $e |- ( Base ` K ) = B $.
grppropstr.p $e |- ( +g ` K ) = .+ $.
grppropstr.l $e |- L
= { <. ( Base ` ndx ) , B >. , <. ( +g ` ndx ) , .+ >. } $.
$( Generalize a specific 2-element group ` L ` to show that any set ` K `
with the same (relevant) properties is also a group. (Contributed by
NM, 28-Oct-2012.) (Revised by Mario Carneiro, 6-Jan-2015.) $)
grppropstrg $p |- ( K e. V -> ( K e. Grp <-> L e. Grp ) ) $=
( vx vy wcel cbs cfv cvv wceq eqeltrrid cplusg syl2anc eqtrid cv wfn elex
basfn funfvex funfni plusgslid slotex grpbaseg eqtr4d wa grpplusgg oveqdr
sylancr grppropd ) CEKZIJACDUOADLMZCLMZUOANKZBNKZAUPOUOAUQNFUOLNUACNKUQNK
ZUCCEUBUTNCLCLUDUEUMPZUOBCQMZNGCQEUFUGPZABDNNHUHRZUOUQAUPFVDSUIVDUOITAKJT
AKUJIJVBDQMZUOVBBVEGUOURUSBVEOVAVCABDNNHUKRSULUN $.
$}

${
$d x y .+ $. $d y .0. $. $d x y B $. $d x y G $. $d x y ph $.
$d y N $.
Expand Down Expand Up @@ -149042,6 +149059,290 @@ the additive structure must be abelian (see ~ ringcom ), care must be
RUAUSGVCVGUTVA $.
$}

${
rngz.b $e |- B = ( Base ` R ) $.
rngz.t $e |- .x. = ( .r ` R ) $.
rngz.z $e |- .0. = ( 0g ` R ) $.
$( The zero of a unital ring is a left-absorbing element. (Contributed by
FL, 31-Aug-2009.) $)
ringlz $p |- ( ( R e. Ring /\ X e. B ) -> ( .0. .x. X ) = .0. ) $=
( crg wcel wa co cplusg cfv wceq cgrp ringgrp grpidcl eqid adantr w3a syl
grplid syl2anc2 oveq1d simpr ringdir syldan ringcl syl3anc grprid syl2anc
3jca simpl eqcomd 3eqtr3d wb grplcan syl13anc mpbid ) BIJZDAJZKZEDCLZVDBM
NZLZVDEVELZOZVDEOZVCEEVELZDCLZVDVFVGVCVJEDCVAVJEOZVBVABPJZEAJZVLBQZABEFHR
ZAVEBEEFVESZHUCUDTUEVAVBVNVNVBUAVKVFOVCVNVNVBVAVNVBVAVMVNVOVPUBTZVRVAVBUF
ZUMAVEBCEEDFVQGUGUHVCVMVDAJZVDVGOVAVMVBVOTZVCVAVNVBVTVAVBUNVRVSABCEDFGUIU
JZVMVTKVGVDAVEBVDEFVQHUKUOULUPVCVMVTVNVTVHVIUQWAWBVRWBAVEBVDEVDFVQURUSUT
$.

$( The zero of a unital ring is a right-absorbing element. (Contributed by
FL, 31-Aug-2009.) $)
ringrz $p |- ( ( R e. Ring /\ X e. B ) -> ( X .x. .0. ) = .0. ) $=
( crg wcel wa co cplusg cfv wceq cgrp ringgrp grpidcl grplid adantr simpr
eqid syl2anc2 oveq2d w3a 3jca ringdi syldan ringcl mpd3an3 eqcomd syl2anc
syl 3eqtr3d wb grprcan syl13anc mpbid ) BIJZDAJZKZDECLZVBBMNZLZEVBVCLZOZV
BEOZVADEEVCLZCLZVBVDVEVAVHEDCUSVHEOZUTUSBPJZEAJZVJBQZABEFHRZAVCBEEFVCUBZH
SUCTUDUSUTUTVLVLUEVIVDOVAUTVLVLUSUTUAUSVLUTUSVKVLVMVNUMTZVPUFAVCBCDEEFVOG
UGUHVAVKVBAJZVBVEOUSVKUTVMTZUSUTVLVQVPABCDEFGUIUJZVKVQKVEVBAVCBVBEFVOHSUK
ULUNVAVKVQVLVQVFVGUOVRVSVPVSAVCBVBEVBFVOUPUQUR $.
$}

${
$d x y z R $.
$( Any ring is also a semiring. (Contributed by Thierry Arnoux,
1-Apr-2018.) $)
ringsrg $p |- ( R e. Ring -> R e. SRing ) $=
( vx vy vz crg wcel ccmn cmgp cfv cmnd cv cplusg co cmulr wceq wa cbs c0g
wral eqid csrg ringcmn ringmgp isring simp3bi ringlz ringrz jca ralrimiva
cgrp r19.26 sylanbrc issrg syl3anbrc ) AEFZAGFAHIZJFZBKZCKZDKZALIZMANIZMU
RUSVBMURUTVBMZVAMOURUSVAMUTVBMVCUSUTVBMVAMOPDAQIZSCVDSZARIZURVBMVFOZURVFV
BMVFOZPZPBVDSZAUAFAUBAUPUPTZUCUOVEBVDSZVIBVDSVJUOAUJFUQVLBCDVDVAAVBUPVDTZ
VKVATZVBTZUDUEUOVIBVDUOURVDFPVGVHVDAVBURVFVMVOVFTZUFVDAVBURVFVMVOVPUGUHUI
VEVIBVDUKULBCDVDVAAVBUPVFVMVKVNVOVPUMUN $.
$}

${
ring1eq0.b $e |- B = ( Base ` R ) $.
ring1eq0.u $e |- .1. = ( 1r ` R ) $.
ring1eq0.z $e |- .0. = ( 0g ` R ) $.
$( If one and zero are equal, then any two elements of a ring are equal.
Alternately, every ring has one distinct from zero except the zero ring
containing the single element ` { 0 } ` . (Contributed by Mario
Carneiro, 10-Sep-2014.) $)
ring1eq0 $p |- ( ( R e. Ring /\ X e. B /\ Y e. B ) ->
( .1. = .0. -> X = Y ) ) $=
( crg wcel w3a wceq wa co oveq1d ringlz syl2anc eqtr4d ringlidm cmulr cfv
simpr simpl1 simpl2 eqid simpl3 3eqtr3d ex ) BJKZDAKZEAKZLZCFMZDEMUMUNNZC
DBUAUBZOZCEUPOZDEUOUQFDUPOZURUOCFDUPUMUNUCZPUOURFEUPOZUSUOCFEUPUTPUOUSFVA
UOUJUKUSFMUJUKULUNUDZUJUKULUNUEZABUPDFGUPUFZIQRUOUJULVAFMVBUJUKULUNUGZABU
PEFGVDIQRSSSUOUJUKUQDMVBVCABUPCDGVDHTRUOUJULUREMVBVEABUPCEGVDHTRUHUI $.
$}

${
$d X a $. $d .0. a $. $d .1. a $. $d .x. a $. $d ph a $.
ringinvnzdiv.b $e |- B = ( Base ` R ) $.
ringinvnzdiv.t $e |- .x. = ( .r ` R ) $.
ringinvnzdiv.u $e |- .1. = ( 1r ` R ) $.
ringinvnzdiv.z $e |- .0. = ( 0g ` R ) $.
ringinvnzdiv.r $e |- ( ph -> R e. Ring ) $.
ringinvnzdiv.x $e |- ( ph -> X e. B ) $.
ringinvnzdiv.a $e |- ( ph -> E. a e. B ( a .x. X ) = .1. ) $.
$( In a unitary ring, a left invertible element is different from zero iff
` .1. =/= .0. ` . (Contributed by FL, 18-Apr-2010.) (Revised by AV,
24-Aug-2021.) $)
ringinvnz1ne0 $p |- ( ph -> ( X =/= .0. <-> .1. =/= .0. ) ) $=
( co wceq wcel wa oveq2 cv wb wi ringrz sylan eqeq12 biimpd ex mpan9 syl5
crg ringridm eqeq12d syl2anc ad2antrr impbid r19.29a necon3bid ) AFGEGAHU
AZFDPZEQZFGQZEGQZUBHBAUSBRZSZVASZVBVCVBUTUSGDPZQZVFVCFGUSDTVEVGGQZVAVHVCU
CZACUKRZVDVIMBCDUSGIJLUDUEVAVIVJVAVISVHVCUTEVGGUFUGUHUIUJVCFEDPZFGDPZQZVF
VBEGFDTAVNVBUCZVDVAAVKFBRZVOMNVKVPSZVNVBVQVLFVMGBCDEFIJKULBCDFGIJLUDUMUGU
NUOUJUPOUQUR $.

$d Y a $.
ringinvnzdiv.y $e |- ( ph -> Y e. B ) $.
$( In a unitary ring, a left invertible element is not a zero divisor.
(Contributed by FL, 18-Apr-2010.) (Revised by Jeff Madsen,
18-Apr-2010.) (Revised by AV, 24-Aug-2021.) $)
ringinvnzdiv $p |- ( ph -> ( ( X .x. Y ) = .0. <-> Y = .0. ) ) $=
( co wceq adantr cv wrex wi wcel wa crg ringlidm syl2anc eqcomd ad3antrrr
oveq1 eqcoms adantl w3a simpr 3jca jca ringass syl eqtrd ringrz sylan9eqr
oveq2 sylan 3eqtrd exp31 rexlimdva mpd ex impbid ) AFGDRZHSZGHSZAIUAZFDRZ
ESZIBUBVLVMUCZPAVPVQIBAVNBUDZUEZVPVLVMVSVPUEZVLUEGEGDRZVNVKDRZHAGWASVRVPV
LAWAGACUFUDZGBUDZWAGSNQBCDEGJKLUGUHUIUJVTWAWBSVLVTWAVOGDRZWBVPWAWESZVSWFE
VOEVOGDUKULUMVTWCVRFBUDZWDUNZUEZWEWBSVSWIVPVSWCWHAWCVRNTVSVRWGWDAVRUOAWGV
ROTAWDVRQTUPUQTBCDVNFGJKURUSUTTVLVTWBVNHDRZHVKHVNDVCVSWJHSZVPAWCVRWKNBCDV
NHJKMVAVDTVBVEVFVGVHAVMVLVMAVKFHDRZHGHFDVCAWCWGWLHSNOBCDFHJKMVAUHVBVIVJ
$.
$}

${
ringnegl.b $e |- B = ( Base ` R ) $.
ringnegl.t $e |- .x. = ( .r ` R ) $.
ringnegl.u $e |- .1. = ( 1r ` R ) $.
ringnegl.n $e |- N = ( invg ` R ) $.
ringnegl.r $e |- ( ph -> R e. Ring ) $.
ringnegl.x $e |- ( ph -> X e. B ) $.
$( Negation in a ring is the same as left multiplication by -1.
(Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro,
2-Jul-2014.) $)
ringnegl $p |- ( ph -> ( ( N ` .1. ) .x. X ) = ( N ` X ) ) $=
( cfv co wceq wcel syl syl2anc eqid cplusg c0g crg ringidcl cgrp grpinvcl
ringgrp ringdir syl13anc grprinv oveq1d ringlz eqtrd ringlidm 3eqtr3rd wb
ringcl syl3anc grpinvid1 mpbird eqcomd ) AGFNZEFNZGDOZAVBVDPZGVDCUANZOZCU
BNZPZAEVCVFOZGDOZEGDOZVDVFOZVHVGACUCQZEBQZVCBQZGBQZVKVMPLAVNVOLBCEHJUDRZA
CUEQZVOVPAVNVSLCUGRZVRBCFEHKUFSZMBVFCDEVCGHVFTZIUHUIAVKVHGDOZVHAVJVHGDAVS
VOVJVHPVTVRBVFCFEVHHWBVHTZKUJSUKAVNVQWCVHPLMBCDGVHHIWDULSUMAVLGVDVFAVNVQV
LGPLMBCDEGHIJUNSUKUOAVSVQVDBQZVEVIUPVTMAVNVPVQWELWAMBCDVCGHIUQURBVFCFGVDV
HHWBWDKUSURUTVA $.

$( Negation in a ring is the same as right multiplication by -1.
(Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro,
2-Jul-2014.) $)
rngnegr $p |- ( ph -> ( X .x. ( N ` .1. ) ) = ( N ` X ) ) $=
( cfv co wceq wcel syl syl2anc eqid cplusg c0g crg cgrp ringidcl grpinvcl
ringgrp ringdi syl13anc grplinv oveq2d ringrz ringridm 3eqtr3rd wb ringcl
eqtrd syl3anc grpinvid2 mpbird eqcomd ) AGFNZGEFNZDOZAVBVDPZVDGCUANZOZCUB
NZPZAGVCEVFOZDOZVDGEDOZVFOZVHVGACUCQZGBQZVCBQZEBQZVKVMPLMACUDQZVQVPAVNVRL
CUGRZAVNVQLBCEHJUERZBCFEHKUFSZVTBVFCDGVCEHVFTZIUHUIAVKGVHDOZVHAVJVHGDAVRV
QVJVHPVSVTBVFCFEVHHWBVHTZKUJSUKAVNVOWCVHPLMBCDGVHHIWDULSUQAVLGVDVFAVNVOVL
GPLMBCDEGHIJUMSUKUNAVRVOVDBQZVEVIUOVSMAVNVOVPWELMWABCDGVCHIUPURBVFCFGVDVH
HWBWDKUSURUTVA $.
$}

${
ringneglmul.b $e |- B = ( Base ` R ) $.
ringneglmul.t $e |- .x. = ( .r ` R ) $.
ringneglmul.n $e |- N = ( invg ` R ) $.
ringneglmul.r $e |- ( ph -> R e. Ring ) $.
ringneglmul.x $e |- ( ph -> X e. B ) $.
ringneglmul.y $e |- ( ph -> Y e. B ) $.
$( Negation of a product in a ring. ( ~ mulneg1 analog.) (Contributed by
Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) $)
ringmneg1 $p |- ( ph -> ( ( N ` X ) .x. Y ) = ( N ` ( X .x. Y ) ) ) $=
( cur cfv co crg wcel syl ringnegl wceq ringgrp ringidcl grpinvcl syl2anc
cgrp eqid ringass syl13anc oveq1d ringcl syl3anc 3eqtr3d ) ACNOZEOZFDPZGD
PZUOFGDPZDPZFEOZGDPUREOACQRZUOBRZFBRZGBRZUQUSUAKACUFRZUNBRZVBAVAVEKCUBSAV
AVFKBCUNHUNUGZUCSBCEUNHJUDUELMBCDUOFGHIUHUIAUPUTGDABCDUNEFHIVGJKLTUJABCDU
NEURHIVGJKAVAVCVDURBRKLMBCDFGHIUKULTUM $.

$( Negation of a product in a ring. ( ~ mulneg2 analog.) (Contributed by
Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro, 2-Jul-2014.) $)
ringmneg2 $p |- ( ph -> ( X .x. ( N ` Y ) ) = ( N ` ( X .x. Y ) ) ) $=
( co cur cfv crg wcel syl rngnegr wceq cgrp ringgrp eqid ringidcl syl2anc
grpinvcl ringass syl13anc ringcl syl3anc oveq2d 3eqtr3rd ) AFGDNZCOPZEPZD
NZFGUPDNZDNZUNEPFGEPZDNACQRZFBRZGBRZUPBRZUQUSUAKLMACUBRZUOBRZVDAVAVEKCUCS
AVAVFKBCUOHUOUDZUESBCEUOHJUGUFBCDFGUPHIUHUIABCDUOEUNHIVGJKAVAVBVCUNBRKLMB
CDFGHIUJUKTAURUTFDABCDUOEGHIVGJKMTULUM $.

$( Double negation of a product in a ring. ( ~ mul2neg analog.)
(Contributed by Mario Carneiro, 4-Dec-2014.) $)
ringm2neg $p |- ( ph -> ( ( N ` X ) .x. ( N ` Y ) ) = ( X .x. Y ) ) $=
( cfv co cgrp wcel crg ringgrp syl2anc syl grpinvcl ringmneg1 fveq2d wceq
ringmneg2 ringcl syl3anc grpinvinv 3eqtrd ) AFENGENZDOFUKDOZENFGDOZENZENZ
UMABCDEFUKHIJKLACPQZGBQZUKBQACRQZUPKCSUAZMBCEGHJUBTUCAULUNEABCDEFGHIJKLMU
FUDAUPUMBQZUOUMUEUSAURFBQUQUTKLMBCDFGHIUGUHBCEUMHJUITUJ $.
$}

${
ringsubdi.b $e |- B = ( Base ` R ) $.
ringsubdi.t $e |- .x. = ( .r ` R ) $.
ringsubdi.m $e |- .- = ( -g ` R ) $.
ringsubdi.r $e |- ( ph -> R e. Ring ) $.
ringsubdi.x $e |- ( ph -> X e. B ) $.
ringsubdi.y $e |- ( ph -> Y e. B ) $.
ringsubdi.z $e |- ( ph -> Z e. B ) $.
$( Ring multiplication distributes over subtraction. ( ~ subdi analog.)
(Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro,
2-Jul-2014.) $)
ringsubdi $p |- ( ph ->
( X .x. ( Y .- Z ) ) = ( ( X .x. Y ) .- ( X .x. Z ) ) ) $=
( cfv co wcel wceq syl2anc cminusg cplusg crg ringgrp syl grpinvcl ringdi
cgrp syl13anc ringmneg2 oveq2d eqtrd grpsubval ringcl syl3anc 3eqtr4d
eqid ) AFGHCUAPZPZCUBPZQZDQZFGDQZFHDQZURPZUTQZFGHEQZDQVCVDEQZAVBVCFUSDQZU
TQZVFACUCRZFBRZGBRZUSBRZVBVJSLMNACUHRZHBRZVNAVKVOLCUDUEOBCURHIURUQZUFTBUT
CDFGUSIUTUQZJUGUIAVIVEVCUTABCDURFHIJVQLMOUJUKULAVGVAFDAVMVPVGVASNOBUTCURE
GHIVRVQKUMTUKAVCBRZVDBRZVHVFSAVKVLVMVSLMNBCDFGIJUNUOAVKVLVPVTLMOBCDFHIJUN
UOBUTCUREVCVDIVRVQKUMTUP $.

$( Ring multiplication distributes over subtraction. ( ~ subdir analog.)
(Contributed by Jeff Madsen, 19-Jun-2010.) (Revised by Mario Carneiro,
2-Jul-2014.) $)
rngsubdir $p |- ( ph ->
( ( X .- Y ) .x. Z ) = ( ( X .x. Z ) .- ( Y .x. Z ) ) ) $=
( cfv co wcel wceq syl2anc cminusg crg cgrp ringgrp eqid grpinvcl ringdir
cplusg syl ringmneg1 oveq2d eqtrd grpsubval oveq1d ringcl syl3anc 3eqtr4d
syl13anc ) AFGCUAPZPZCUHPZQZHDQZFHDQZGHDQZUSPZVAQZFGEQZHDQVDVEEQZAVCVDUTH
DQZVAQZVGACUBRZFBRZUTBRZHBRZVCVKSLMACUCRZGBRZVNAVLVPLCUDUINBCUSGIUSUEZUFT
OBVACDFUTHIVAUEZJUGURAVJVFVDVAABCDUSGHIJVRLNOUJUKULAVHVBHDAVMVQVHVBSMNBVA
CUSEFGIVSVRKUMTUNAVDBRZVEBRZVIVGSAVLVMVOVTLMOBCDFHIJUOUPAVLVQVOWALNOBCDGH
IJUOUPBVACUSEVDVEIVSVRKUMTUQ $.
$}

${
$d x y B $. $d x y R $. $d x y .x. $. $d x y .X. $. $d x y X $.
$d x N $. $d x y Y $.
mulgass2.b $e |- B = ( Base ` R ) $.
mulgass2.m $e |- .x. = ( .g ` R ) $.
mulgass2.t $e |- .X. = ( .r ` R ) $.
$( An associative property between group multiple and ring multiplication.
(Contributed by Mario Carneiro, 14-Jun-2015.) $)
mulgass2 $p |- ( ( R e. Ring /\ ( N e. ZZ /\ X e. B /\ Y e. B ) ) ->
( ( N .x. X ) .X. Y ) = ( N .x. ( X .X. Y ) ) ) $=
( wcel co wceq cc0 oveq1 oveq1d eqeq12d cfv adantr syl3anc vx vy cz wi cv
crg cneg caddc w3a c0g eqid ringlz 3adant3 simp3 mulg0 syl ringcl 3eqtr4d
c1 3com23 cn0 wa cplusg cgrp simpl1 ringgrp adantl mulgp1 3ad2ant1 mulgcl
nn0z simpl2 ringdir syl13anc eqtrd syl5ibr ex cminusg fveq2 nnz ringmneg1
cn mulgneg zindd 3exp com24 3imp2 ) BUFKZEUCKZFAKZGAKZEFCLZGDLZEFGDLZCLZM
ZWHWKWJWIWPWHWKWJWIWPUDUAUEZFCLZGDLZWQWNCLZMNFCLZGDLZNWNCLZMUBUEZFCLZGDLZ
XDWNCLZMZXDUGZFCLZGDLZXIWNCLZMZXDUSUHLZFCLZGDLZXNWNCLZMZWPWHWKWJUIZUAUBEW
QNMZWSXBWTXCXTWRXAGDWQNFCOPWQNWNCOQWQXDMZWSXFWTXGYAWRXEGDWQXDFCOPWQXDWNCO
QWQXNMZWSXPWTXQYBWRXOGDWQXNFCOPWQXNWNCOQWQXIMZWSXKWTXLYCWRXJGDWQXIFCOPWQX
IWNCOQWQEMZWSWMWTWOYDWRWLGDWQEFCOPWQEWNCOQXSBUJRZGDLZYEXBXCWHWKYFYEMWJABD
GYEHJYEUKZULUMXSXAYEGDXSWJXAYEMWHWKWJUNZACBFYEHYGIUOUPPXSWNAKZXCYEMWHWJWK
YIABDFGHJUQUTZACBWNYEHYGIUOUPURXSXDVAKZXHXRUDXHXRXSYKVBZXFWNBVCRZLZXGWNYM
LZMXFXGWNYMOYLXPYNXQYOYLXPXEFYMLZGDLZYNYLXOYPGDYLBVDKZXDUCKZWJXOYPMYLWHYR
WHWKWJYKVEZBVFZUPZYKYSXSXDVKVGZXSWJYKYHSZAYMCBXDFHIYMUKZVHTPYLWHXEAKZWJWK
YQYNMYTYLYRYSWJUUFXSYRYKWHWKYRWJUUAVIZSUUCUUDACBXDFHIVJZTUUDWHWKWJYKVLAYM
BDXEFGHUUEJVMVNVOYLYRYSYIXQYOMUUBUUCXSYIYKYJSAYMCBXDWNHIUUEVHTQVPVQXSXDWB
KZXHXMUDXHXMXSUUIVBZXFBVRRZRZXGUUKRZMXFXGUUKVSUUJXKUULXLUUMUUJXKXEUUKRZGD
LUULUUJXJUUNGDUUJYRYSWJXJUUNMXSYRUUIUUGSZUUIYSXSXDVTVGZXSWJUUIYHSZACBUUKX
DFHIUUKUKZWCTPUUJABDUUKXEGHJUURWHWKWJUUIVEUUJYRYSWJUUFUUOUUPUUQUUHTWHWKWJ
UUIVLWAVOUUJYRYSYIXLUUMMUUOUUPXSYIUUIYJSACBUUKXDWNHIUURWCTQVPVQWDWEWFWG
$.
$}

${
$d Z a b c x y $. $d M a b c x y $. $d V a b c x y $.
ring1.m $e |- M = { <. ( Base ` ndx ) , { Z } >. ,
<. ( +g ` ndx ) , { <. <. Z , Z >. , Z >. } >. ,
<. ( .r ` ndx ) , { <. <. Z , Z >. , Z >. } >. } $.
$( The (smallest) structure representing a _zero ring_. (Contributed by
AV, 28-Apr-2019.) $)
ring1 $p |- ( Z e. V -> M e. Ring ) $=
( va vb vc wcel cfv cv cop co wceq wa wral cplusg cvv eqid cn eqeq12d csn
vx cgrp cmgp cmnd w3a crg cnx cbs cpr snexg opexg anidms mpancom rngbaseg
vy syl syl3anc opeq2d rngplusgg preq12d grp1 eqeltrrd cmulr ctp basendxnn
sylancr cslot plusgslid simpri mulrslid tpexg eqeltrid grppropstrg mpbird
mnd1 eqidd grpbaseg syl2anc mgpbasg 3eqtr3rd rngmulrg grpplusgg mgpplusgg
wb oveqdr mndpropd df-ov fvsng eqtrid oveq2d oveq12d eqtr4d oveq1 anbi12d
oveq1d 2ralbidv ralsng oveq2 ralbidv 3bitrd mpbir2and 3jca oveqd oveq123d
raleqbidv 3anbi3d isring bitr4di mpbid ) CBHZAUCHZAUDIZUEHZEJZFJZGJZCCKZC
KZUAZLZXTLZXOXPXTLZXOXQXTLZXTLZMZYCXQXTLZYDYAXTLZMZNZGCUAZOZFYKOZEYKOZUFZ
AUGHZXKXLXNYNXKXLUHUIIZAUIIZKZUHPIZAPIZKZUJZUCHZXKYQYKKZYTXTKZUJZUUCUCXKU
UEYSUUFUUBXKYKYRYQXKYKQHZXTQHZUUIYKYRMCBUKZXKXSQHZUUIXRQHZXKUUKXKUULCCBBU
LUMZXRCQBULUNXSQUKUQZUUNYKXTAXTQQQDUOURZUSXKXTUUAYTXKUUHUUIUUIXTUUAMUUJUU
NUUNYKXTAXTQQQDUTURZUSVACUUGBUUGRZVBVCXKAQHZXLUUDWEXKAUUEUUFUHVDIZXTKZVEZ
QDXKUUEQHZUUFQHZUUTQHZUVAQHXKYQSHUUHUVBVFUUJYQYKSQULVGXKYTSHZUUIUVCPYTVHM
UVEVIVJUUNYTXTSQULVGXKUUSSHZUUIUVDVDUUSVHMUVFVKVJUUNUUSXTSQULVGUUEUUFUUTQ
QQVLURVMZYRUUAAUUCQYRRZUUARZUUCRVNUQVOXKXNUUGUEHCUUGBUUQVPXKUBUPXMUIIZXMU
UGXKUVJVQXKYKYRUUGUIIZUVJUUOXKUUHUUIYKUVKMUUJUUNYKXTUUGQQUUQVRVSXKUURYRUV
JMUVGYRAXMQXMRZUVHVTUQWAXKUBJUVJHUPJUVJHNUBUPXMPIZUUGPIZXKXTAVDIZUVNUVMXK
UUHUUIUUIXTUVOMUUJUUNUUNYKXTAXTQQQDWBURZXKUUHUUIXTUVNMUUJUUNYKXTUUGQQUUQW
CVSXKUURUVOUVMMUVGAUVOXMQUVLUVORZWDUQWAWFWGVOXKYNCCCXTLZXTLZUVRUVRXTLZMZU
VRCXTLZUVTMZXKUVSUVRUVTXKUVRCCXTXKUVRXRXTIZCCCXTWHUULXKUWDCMUUMXRCQBWIUNW
JZWKXKUVRCUVRCXTUWEUWEWLZWMXKUWBUVRUVTXKUVRCCXTUWEWPUWFWMXKYNCYAXTLZCXPXT
LZCXQXTLZXTLZMZUWHXQXTLZUWIYAXTLZMZNZGYKOZFYKOZCUWIXTLZUVRUWIXTLZMZUVRXQX
TLZUWIUWIXTLZMZNZGYKOZUWAUWCNZYMUWQECBXOCMZYJUWOFGYKYKUXGYFUWKYIUWNUXGYBU
WGYEUWJXOCYAXTWNUXGYCUWHYDUWIXTXOCXPXTWNZXOCXQXTWNZWLTUXGYGUWLYHUWMUXGYCU
WHXQXTUXHWPUXGYDUWIYAXTUXIWPTWOWQWRUWPUXEFCBXPCMZUWOUXDGYKUXJUWKUWTUWNUXC
UXJUWGUWRUWJUWSUXJYAUWICXTXPCXQXTWNZWKUXJUWHUVRUWIXTXPCCXTWSZWPTUXJUWLUXA
UWMUXBUXJUWHUVRXQXTUXLWPUXJYAUWIUWIXTUXKWKTWOWTWRUXDUXFGCBXQCMZUWTUWAUXCU
WCUXMUWRUVSUWSUVTUXMUWIUVRCXTXQCCXTWSZWKUXMUWIUVRUVRXTUXNWKTUXMUXAUWBUXBU
VTXQCUVRXTWSUXMUWIUVRUWIUVRXTUXNUXNWLTWOWRXAXBXCXKYOXLXNXOXPXQUUALZUVOLZX
OXPUVOLZXOXQUVOLZUUALZMZXOXPUUALZXQUVOLZUXRXPXQUVOLZUUALZMZNZGYROZFYROZEY
ROZUFYPXKYNUYIXLXNXKYMUYHEYKYRUUOXKYLUYGFYKYRUUOXKYJUYFGYKYRUUOXKYFUXTYIU
YEXKYBUXPYEUXSXKXOXOYAUXOXTUVOUVPXKXOVQXKXTUUAXPXQUUPXDXEXKYCUXQYDUXRXTUU
AUUPXKXTUVOXOXPUVPXDXKXTUVOXOXQUVPXDZXETXKYGUYBYHUYDXKYCUYAXQXQXTUVOUVPXK
XTUUAXOXPUUPXDXKXQVQXEXKYDUXRYAUYCXTUUAUUPUYJXKXTUVOXPXQUVPXDXETWOXFXFXFX
GEFGYRUUAAUVOXMUVHUVLUVIUVQXHXIXJ $.
$}

$( The class of rings is not empty (it is also inhabited, as shown at
~ ring1 ). (Contributed by AV, 29-Apr-2019.) $)
ringn0 $p |- Ring =/= (/) $=
( vz cv cvv wcel cnx cbs cfv csn cop cplusg cmulr ctp crg c0 wne eqid ring1
vex ne0i mp2b ) ABZCDEFGUAHIEJGUAUAIUAIHZIEKGUBILZMDMNOARUCCUAUCPQMUCST $.


$(
#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#*#
Expand Down
64 changes: 61 additions & 3 deletions mmil.raw.html
Original file line number Diff line number Diff line change
Expand Up @@ -10533,9 +10533,7 @@

<tr>
<td>grppropstr</td>
<td><i>none</i></td>
<td>The forward direction seems provable; the reverse
direction might need a ` K e. _V ` condition.</td>
<td>~ grppropstrg</td>
</tr>

<tr>
Expand Down Expand Up @@ -10764,6 +10762,66 @@
<td>the set.mm proof uses ressbas2 and ressplusg</td>
</tr>

<tr>
<td>ring1ne0</td>
<td><i>none</i></td>
<td>probably provable but the set.mm proof uses hashgt12el</td>
</tr>

<tr>
<td>ringlghm , ringrghm</td>
<td><i>none</i></td>
<td>depend on GrpHom ( df-ghm )</td>
</tr>

<tr>
<td>gsummulc1 , gsummulc2</td>
<td><i>none</i></td>
<td>depend on finSupp and gsum theorems we do not have</td>
</tr>

<tr>
<td>gsummgp0</td>
<td><i>none</i></td>
<td>depends on gsum theorems we do not have</td>
</tr>

<tr>
<td>gsumdixp</td>
<td><i>none</i></td>
<td>depends on finSupp and gsum theorems we do not have</td>
</tr>

<tr>
<td>prdsmgp , prdsmulrcl , prdsringd , prdscrngd , prds1</td>
<td><i>none</i></td>
<td>depend on various structure product theorems</td>
</tr>

<tr>
<td>pwsring , pws1 , pwscrng , pwsmgp</td>
<td><i>none</i></td>
<td>depend on various structure power theorems</td>
</tr>

<tr>
<td>imasring</td>
<td><i>none</i></td>
<td>depends on various image structure theorems</td>
</tr>

<tr>
<td>qusring2</td>
<td><i>none</i></td>
<td>depends on various quotient structure theorems</td>
</tr>

<tr>
<td>crngbinom</td>
<td><i>none</i></td>
<td>depends on various ` gsum ` theorems</td>
</tr>

<tr>
<td>df-drng</td>
<td><i>none</i></td>
Expand Down

0 comments on commit 3fd6f0e

Please sign in to comment.