-
Notifications
You must be signed in to change notification settings - Fork 193
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Added yolov8n model download and example script for yolov8n
- Loading branch information
Showing
3 changed files
with
158 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,127 @@ | ||
#!/usr/bin/env python3 | ||
|
||
""" | ||
The code is the same as for Tiny Yolo V3 and V4, the only difference is the blob file | ||
- Tiny YOLOv3: https://github.com/david8862/keras-YOLOv3-model-set | ||
- Tiny YOLOv4: https://github.com/TNTWEN/OpenVINO-YOLOV4 | ||
""" | ||
|
||
from pathlib import Path | ||
import sys | ||
import cv2 | ||
import depthai as dai | ||
import numpy as np | ||
import time | ||
|
||
# Get yolo v8n model blob file path | ||
nnPath = str((Path(__file__).parent / Path('../models/yolov8n_coco_640x352.blob')).resolve().absolute()) | ||
if not Path(nnPath).exists(): | ||
import sys | ||
raise FileNotFoundError(f'Required file/s not found, please run "{sys.executable} install_requirements.py"') | ||
|
||
# yolo v8 abel texts | ||
labelMap = [ | ||
"person", "bicycle", "car", "motorbike", "aeroplane", "bus", "train", | ||
"truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench", | ||
"bird", "cat", "dog", "horse", "sheep", "cow", "elephant", | ||
"bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie", | ||
"suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", | ||
"baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup", | ||
"fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", | ||
"orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", | ||
"chair", "sofa", "pottedplant", "bed", "diningtable", "toilet", "tvmonitor", | ||
"laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", | ||
"toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors", | ||
"teddy bear", "hair drier", "toothbrush" | ||
] | ||
|
||
syncNN = True | ||
|
||
# Create pipeline | ||
pipeline = dai.Pipeline() | ||
|
||
# Define sources and outputs | ||
camRgb = pipeline.create(dai.node.ColorCamera) | ||
detectionNetwork = pipeline.create(dai.node.YoloDetectionNetwork) | ||
xoutRgb = pipeline.create(dai.node.XLinkOut) | ||
nnOut = pipeline.create(dai.node.XLinkOut) | ||
|
||
xoutRgb.setStreamName("rgb") | ||
nnOut.setStreamName("nn") | ||
|
||
# Properties | ||
camRgb.setPreviewSize(640, 352) | ||
camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P) | ||
camRgb.setInterleaved(False) | ||
camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR) | ||
camRgb.setFps(40) | ||
|
||
# Network specific settings | ||
detectionNetwork.setConfidenceThreshold(0.5) | ||
detectionNetwork.setNumClasses(80) | ||
detectionNetwork.setCoordinateSize(4) | ||
detectionNetwork.setIouThreshold(0.5) | ||
detectionNetwork.setBlobPath(nnPath) | ||
detectionNetwork.setNumInferenceThreads(2) | ||
detectionNetwork.input.setBlocking(False) | ||
|
||
# Linking | ||
camRgb.preview.link(detectionNetwork.input) | ||
if syncNN: | ||
detectionNetwork.passthrough.link(xoutRgb.input) | ||
else: | ||
camRgb.preview.link(xoutRgb.input) | ||
|
||
detectionNetwork.out.link(nnOut.input) | ||
|
||
# Connect to device and start pipeline | ||
with dai.Device(pipeline) as device: | ||
|
||
# Output queues will be used to get the rgb frames and nn data from the outputs defined above | ||
qRgb = device.getOutputQueue(name="rgb", maxSize=4, blocking=False) | ||
qDet = device.getOutputQueue(name="nn", maxSize=4, blocking=False) | ||
|
||
frame = None | ||
detections = [] | ||
startTime = time.monotonic() | ||
counter = 0 | ||
color2 = (255, 255, 255) | ||
|
||
# nn data, being the bounding box locations, are in <0..1> range - they need to be normalized with frame width/height | ||
def frameNorm(frame, bbox): | ||
normVals = np.full(len(bbox), frame.shape[0]) | ||
normVals[::2] = frame.shape[1] | ||
return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int) | ||
|
||
def displayFrame(name, frame): | ||
color = (255, 0, 0) | ||
for detection in detections: | ||
bbox = frameNorm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax)) | ||
cv2.putText(frame, labelMap[detection.label], (bbox[0] + 10, bbox[1] + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255) | ||
cv2.putText(frame, f"{int(detection.confidence * 100)}%", (bbox[0] + 10, bbox[1] + 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255) | ||
cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 2) | ||
# Show the frame | ||
cv2.imshow(name, frame) | ||
|
||
while True: | ||
if syncNN: | ||
inRgb = qRgb.get() | ||
inDet = qDet.get() | ||
else: | ||
inRgb = qRgb.tryGet() | ||
inDet = qDet.tryGet() | ||
|
||
if inRgb is not None: | ||
frame = inRgb.getCvFrame() | ||
cv2.putText(frame, "NN fps: {:.2f}".format(counter / (time.monotonic() - startTime)), | ||
(2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, color2) | ||
|
||
if inDet is not None: | ||
detections = inDet.detections | ||
counter += 1 | ||
|
||
if frame is not None: | ||
displayFrame("rgb", frame) | ||
|
||
if cv2.waitKey(1) == ord('q'): | ||
break |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
# Copyright (c) 2021 Intel Corporation | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
description: >- | ||
v8n-yolo | ||
task_type: object_attributes | ||
files: | ||
- name: yolov8n_coco_640x352.blob | ||
size: 6376024 | ||
sha256: 6c2b9a63b8324cd80a4d413cffb3e0f4471e6731faa90513faa1e7fed83f6348 | ||
source: https://artifacts.luxonis.com/artifactory/luxonis-depthai-data-local/network/yolov8n_coco_640x352.blob | ||
|
||
framework: dldt | ||
license: https://raw.githubusercontent.com/openvinotoolkit/open_model_zoo/master/LICENSE |