Skip to content

Commit

Permalink
Example yolov8n (#1078)
Browse files Browse the repository at this point in the history
* Added yolov8n model download and example script for yolov8n
  • Loading branch information
b-lovro authored Sep 27, 2024
1 parent 302296a commit 1a1eb16
Show file tree
Hide file tree
Showing 3 changed files with 158 additions and 0 deletions.
127 changes: 127 additions & 0 deletions examples/Yolo/yolov8_nano.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
#!/usr/bin/env python3

"""
The code is the same as for Tiny Yolo V3 and V4, the only difference is the blob file
- Tiny YOLOv3: https://github.com/david8862/keras-YOLOv3-model-set
- Tiny YOLOv4: https://github.com/TNTWEN/OpenVINO-YOLOV4
"""

from pathlib import Path
import sys
import cv2
import depthai as dai
import numpy as np
import time

# Get yolo v8n model blob file path
nnPath = str((Path(__file__).parent / Path('../models/yolov8n_coco_640x352.blob')).resolve().absolute())
if not Path(nnPath).exists():
import sys
raise FileNotFoundError(f'Required file/s not found, please run "{sys.executable} install_requirements.py"')

# yolo v8 abel texts
labelMap = [
"person", "bicycle", "car", "motorbike", "aeroplane", "bus", "train",
"truck", "boat", "traffic light", "fire hydrant", "stop sign", "parking meter", "bench",
"bird", "cat", "dog", "horse", "sheep", "cow", "elephant",
"bear", "zebra", "giraffe", "backpack", "umbrella", "handbag", "tie",
"suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat",
"baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "wine glass", "cup",
"fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich",
"orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake",
"chair", "sofa", "pottedplant", "bed", "diningtable", "toilet", "tvmonitor",
"laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven",
"toaster", "sink", "refrigerator", "book", "clock", "vase", "scissors",
"teddy bear", "hair drier", "toothbrush"
]

syncNN = True

# Create pipeline
pipeline = dai.Pipeline()

# Define sources and outputs
camRgb = pipeline.create(dai.node.ColorCamera)
detectionNetwork = pipeline.create(dai.node.YoloDetectionNetwork)
xoutRgb = pipeline.create(dai.node.XLinkOut)
nnOut = pipeline.create(dai.node.XLinkOut)

xoutRgb.setStreamName("rgb")
nnOut.setStreamName("nn")

# Properties
camRgb.setPreviewSize(640, 352)
camRgb.setResolution(dai.ColorCameraProperties.SensorResolution.THE_1080_P)
camRgb.setInterleaved(False)
camRgb.setColorOrder(dai.ColorCameraProperties.ColorOrder.BGR)
camRgb.setFps(40)

# Network specific settings
detectionNetwork.setConfidenceThreshold(0.5)
detectionNetwork.setNumClasses(80)
detectionNetwork.setCoordinateSize(4)
detectionNetwork.setIouThreshold(0.5)
detectionNetwork.setBlobPath(nnPath)
detectionNetwork.setNumInferenceThreads(2)
detectionNetwork.input.setBlocking(False)

# Linking
camRgb.preview.link(detectionNetwork.input)
if syncNN:
detectionNetwork.passthrough.link(xoutRgb.input)
else:
camRgb.preview.link(xoutRgb.input)

detectionNetwork.out.link(nnOut.input)

# Connect to device and start pipeline
with dai.Device(pipeline) as device:

# Output queues will be used to get the rgb frames and nn data from the outputs defined above
qRgb = device.getOutputQueue(name="rgb", maxSize=4, blocking=False)
qDet = device.getOutputQueue(name="nn", maxSize=4, blocking=False)

frame = None
detections = []
startTime = time.monotonic()
counter = 0
color2 = (255, 255, 255)

# nn data, being the bounding box locations, are in <0..1> range - they need to be normalized with frame width/height
def frameNorm(frame, bbox):
normVals = np.full(len(bbox), frame.shape[0])
normVals[::2] = frame.shape[1]
return (np.clip(np.array(bbox), 0, 1) * normVals).astype(int)

def displayFrame(name, frame):
color = (255, 0, 0)
for detection in detections:
bbox = frameNorm(frame, (detection.xmin, detection.ymin, detection.xmax, detection.ymax))
cv2.putText(frame, labelMap[detection.label], (bbox[0] + 10, bbox[1] + 20), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.putText(frame, f"{int(detection.confidence * 100)}%", (bbox[0] + 10, bbox[1] + 40), cv2.FONT_HERSHEY_TRIPLEX, 0.5, 255)
cv2.rectangle(frame, (bbox[0], bbox[1]), (bbox[2], bbox[3]), color, 2)
# Show the frame
cv2.imshow(name, frame)

while True:
if syncNN:
inRgb = qRgb.get()
inDet = qDet.get()
else:
inRgb = qRgb.tryGet()
inDet = qDet.tryGet()

if inRgb is not None:
frame = inRgb.getCvFrame()
cv2.putText(frame, "NN fps: {:.2f}".format(counter / (time.monotonic() - startTime)),
(2, frame.shape[0] - 4), cv2.FONT_HERSHEY_TRIPLEX, 0.4, color2)

if inDet is not None:
detections = inDet.detections
counter += 1

if frame is not None:
displayFrame("rgb", frame)

if cv2.waitKey(1) == ord('q'):
break
6 changes: 6 additions & 0 deletions examples/install_requirements.py
Original file line number Diff line number Diff line change
Expand Up @@ -224,6 +224,12 @@ def hasWhitespace(string):
"zoo_type": "depthai",
"default_ov_version": "2022.1"
},
"yolov8n_coco_640x352": {
"shaves": [6],
"compile_params": ["-ip U8"],
"zoo_type": "depthai",
"default_ov_version": "2021.4"
},
}

blobconverter_cmds = [
Expand Down
25 changes: 25 additions & 0 deletions examples/models/v8n-yolo/model.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,25 @@
# Copyright (c) 2021 Intel Corporation
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

description: >-
v8n-yolo
task_type: object_attributes
files:
- name: yolov8n_coco_640x352.blob
size: 6376024
sha256: 6c2b9a63b8324cd80a4d413cffb3e0f4471e6731faa90513faa1e7fed83f6348
source: https://artifacts.luxonis.com/artifactory/luxonis-depthai-data-local/network/yolov8n_coco_640x352.blob

framework: dldt
license: https://raw.githubusercontent.com/openvinotoolkit/open_model_zoo/master/LICENSE

0 comments on commit 1a1eb16

Please sign in to comment.