TTK4900: Hydrogen sulfide detection with behavioural monitoring of salmon juveniles using stereo vision and machine learning
- Without Stereo R-CNN: annotator.py
- With Stereo R-CNN: stereorcnn_annotator.py
- Training dataset: Stereo_RCNN/data/training_data_stereorcnn
- Testing dataset: Stereo_RCNN/data/testing_data_stereorcnn
- stereo_calibration.py
- trainval_net.py
- With Google Colab: setup_train_Stereo_RCNN.ipynb
- test_model.py
- 3D_pos_detections.py
- Track a specific video over a number of frames: tracker.py
- Track many videos: tracker_all_videos.py
- sliding_window.py
- Training dataset: h2s_estimation/data/training_data
- Testing dataset: h2s_estimation/data/testing_data
- SVM, decision tree, random forest: classify_h2s_classifiers.py
- AutoML sk-learn: classify_automl_sklearn.ipynb
- SVM, decision tree, random forest: estimation_h2s_regressors.py
- AutoML sk-learn: estimation_automl_sklearn.ipynb
- H2O AutoML: estimation_automl_H2O.ipynb