Skip to content

Commit

Permalink
copy remaining prob_lang files
Browse files Browse the repository at this point in the history
  • Loading branch information
markusdemedeiros committed Sep 24, 2024
1 parent 7322c1a commit db8be56
Show file tree
Hide file tree
Showing 7 changed files with 3,532 additions and 0 deletions.
160 changes: 160 additions & 0 deletions theories/meas_lang/class_instances.v
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
From Coq Require Import Reals Psatz.
From clutch.common Require Export language.
From clutch.meas_lang Require Export lang tactics notation.
From iris.prelude Require Import options.

(*
Global Instance into_val_val v : IntoVal (Val v) v.
Proof. done. Qed.
Global Instance as_val_val v : AsVal (Val v).
Proof. by eexists. Qed.
(** * Instances of the [Atomic] class *)
Section atomic.
Local Ltac solve_atomic :=
apply strongly_atomic_atomic, ectx_language_atomic;
[intros ????; simpl; by inv_head_step
|apply ectxi_language_sub_redexes_are_values; intros [] **; naive_solver].
Global Instance rec_atomic s f x e : Atomic s (Rec f x e).
Proof. solve_atomic. Qed.
Global Instance injl_atomic s v : Atomic s (InjL (Val v)).
Proof. solve_atomic. Qed.
Global Instance injr_atomic s v : Atomic s (InjR (Val v)).
Proof. solve_atomic. Qed.
(** The instance below is a more general version of [Skip] *)
Global Instance beta_atomic s f x v1 v2 : Atomic s (App (RecV f x (Val v1)) (Val v2)).
Proof. destruct f,x; solve_atomic. Qed.
Global Instance unop_atomic s op v : Atomic s (UnOp op (Val v)).
Proof. solve_atomic. Qed.
Global Instance binop_atomic s op v1 v2 : Atomic s (BinOp op (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Global Instance if_true_atomic s v1 e2 :
Atomic s (If (Val $ LitV $ LitBool true) (Val v1) e2).
Proof. solve_atomic. Qed.
Global Instance if_false_atomic s e1 v2 :
Atomic s (If (Val $ LitV $ LitBool false) e1 (Val v2)).
Proof. solve_atomic. Qed.
Global Instance fst_atomic s v : Atomic s (Fst (Val v)).
Proof. solve_atomic. Qed.
Global Instance snd_atomic s v : Atomic s (Snd (Val v)).
Proof. solve_atomic. Qed.
Global Instance alloc_atomic s v : Atomic s (Alloc (Val v)).
Proof. solve_atomic. Qed.
Global Instance load_atomic s v : Atomic s (Load (Val v)).
Proof. solve_atomic. Qed.
Global Instance store_atomic s v1 v2 : Atomic s (Store (Val v1) (Val v2)).
Proof. solve_atomic. Qed.
Global Instance rand_atomic s z l : Atomic s (Rand (Val (LitV (LitInt z))) (Val (LitV (LitLbl l)))).
Proof. solve_atomic. Qed.
Global Instance rand_atomic_int s z : Atomic s (Rand (Val (LitV (LitInt z))) (Val (LitV LitUnit))).
Proof. solve_atomic. Qed.
Global Instance alloc_tape_atomic s z : Atomic s (AllocTape (Val (LitV (LitInt z)))).
Proof. solve_atomic. Qed.
Global Instance tick_atomic s z : Atomic s (Tick (Val (LitV (LitInt z)))).
Proof. solve_atomic. Qed.
End atomic.
(** * Instances of the [PureExec] class *)
(** The behavior of the various [wp_] tactics with regard to lambda differs in
the following way:
- [wp_pures] does *not* reduce lambdas/recs that are hidden behind a definition.
- [wp_rec] and [wp_lam] reduce lambdas/recs that are hidden behind a definition.
To realize this behavior, we define the class [AsRecV v f x erec], which takes a
value [v] as its input, and turns it into a [RecV f x erec] via the instance
[AsRecV_recv : AsRecV (RecV f x e) f x e]. We register this instance via
[Hint Extern] so that it is only used if [v] is syntactically a lambda/rec, and
not if [v] contains a lambda/rec that is hidden behind a definition.
To make sure that [wp_rec] and [wp_lam] do reduce lambdas/recs that are hidden
behind a definition, we activate [AsRecV_recv] by hand in these tactics. *)
Class AsRecV (v : val) (f x : binder) (erec : expr) :=
as_recv : v = RecV f x erec.
Global Hint Mode AsRecV ! - - - : typeclass_instances.
Definition AsRecV_recv f x e : AsRecV (RecV f x e) f x e := eq_refl.
Global Hint Extern 0 (AsRecV (RecV _ _ _) _ _ _) =>
apply AsRecV_recv : typeclass_instances.
Section pure_exec.
Local Ltac solve_exec_safe := intros; subst; eexists; eapply head_step_support_equiv_rel; eauto with head_step.
Local Ltac solve_exec_puredet :=
intros; simpl;
(repeat case_match); simplify_eq;
rewrite dret_1_1 //.
Local Ltac solve_pure_exec :=
subst; intros ?; apply nsteps_once, pure_head_step_pure_step;
constructor; [solve_exec_safe | solve_exec_puredet].
Global Instance pure_recc f x (erec : expr) :
PureExec True 1 (Rec f x erec) (Val $ RecV f x erec).
Proof.
solve_pure_exec.
Qed.
Global Instance pure_pairc (v1 v2 : val) :
PureExec True 1 (Pair (Val v1) (Val v2)) (Val $ PairV v1 v2).
Proof. solve_pure_exec. Qed.
Global Instance pure_injlc (v : val) :
PureExec True 1 (InjL $ Val v) (Val $ InjLV v).
Proof. solve_pure_exec. Qed.
Global Instance pure_injrc (v : val) :
PureExec True 1 (InjR $ Val v) (Val $ InjRV v).
Proof. solve_pure_exec. Qed.
Global Instance pure_beta f x (erec : expr) (v1 v2 : val) `{!AsRecV v1 f x erec} :
PureExec True 1 (App (Val v1) (Val v2)) (subst' x v2 (subst' f v1 erec)).
Proof. unfold AsRecV in *. subst. solve_pure_exec. Qed.
Global Instance pure_unop op v v' :
PureExec (un_op_eval op v = Some v') 1 (UnOp op (Val v)) (Val v').
Proof. solve_pure_exec. Qed.
Global Instance pure_binop op v1 v2 v' :
PureExec (bin_op_eval op v1 v2 = Some v') 1 (BinOp op (Val v1) (Val v2)) (Val v') | 10.
Proof. solve_pure_exec. Qed.
(* Lower-cost instance for [EqOp]. *)
Global Instance pure_eqop v1 v2 :
PureExec (vals_compare_safe v1 v2) 1
(BinOp EqOp (Val v1) (Val v2))
(Val $ LitV $ LitBool $ bool_decide (v1 = v2)) | 1.
Proof.
intros Hcompare.
cut (bin_op_eval EqOp v1 v2 = Some $ LitV $ LitBool $ bool_decide (v1 = v2)).
{ intros. revert Hcompare. solve_pure_exec. }
rewrite /bin_op_eval /= decide_True //.
Qed.
Global Instance pure_if_true e1 e2 :
PureExec True 1 (If (Val $ LitV $ LitBool true) e1 e2) e1.
Proof. solve_pure_exec. Qed.
Global Instance pure_if_false e1 e2 :
PureExec True 1 (If (Val $ LitV $ LitBool false) e1 e2) e2.
Proof. solve_pure_exec. Qed.
Global Instance pure_fst v1 v2 :
PureExec True 1 (Fst (Val $ PairV v1 v2)) (Val v1).
Proof. solve_pure_exec. Qed.
Global Instance pure_snd v1 v2 :
PureExec True 1 (Snd (Val $ PairV v1 v2)) (Val v2).
Proof. solve_pure_exec. Qed.
Global Instance pure_case_inl v e1 e2 :
PureExec True 1 (Case (Val $ InjLV v) e1 e2) (App e1 (Val v)).
Proof. solve_pure_exec. Qed.
Global Instance pure_case_inr v e1 e2 :
PureExec True 1 (Case (Val $ InjRV v) e1 e2) (App e2 (Val v)).
Proof. solve_pure_exec. Qed.
Global Instance pure_tick (z : Z) :
PureExec True 1 (Tick #z) #().
Proof. solve_pure_exec. Qed.
End pure_exec.
*)
48 changes: 48 additions & 0 deletions theories/meas_lang/ctx_subst.v
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
From stdpp Require Import base stringmap fin_sets fin_map_dom.
From clutch.meas_lang Require Export lang metatheory ectx_language ectxi_language.

(*
(** Substitution in the contexts *)
Definition subst_map_ctx_item (es : stringmap val) (K : ectx_item) :=
match K with
| AppLCtx v2 => AppLCtx v2
| AppRCtx e1 => AppRCtx (subst_map es e1)
| UnOpCtx op => UnOpCtx op
| BinOpLCtx op v2 => BinOpLCtx op v2
| BinOpRCtx op e1 => BinOpRCtx op (subst_map es e1)
| IfCtx e1 e2 => IfCtx (subst_map es e1) (subst_map es e2)
| PairLCtx v2 => PairLCtx v2
| PairRCtx e1 => PairRCtx (subst_map es e1)
| FstCtx => FstCtx
| SndCtx => SndCtx
| InjLCtx => InjLCtx
| InjRCtx => InjRCtx
| CaseCtx e1 e2 => CaseCtx (subst_map es e1) (subst_map es e2)
| AllocNLCtx v2 => AllocNLCtx v2
| AllocNRCtx e1 => AllocNRCtx (subst_map es e1)
| LoadCtx => LoadCtx
| StoreLCtx v2 => StoreLCtx v2
| StoreRCtx e1 => StoreRCtx (subst_map es e1)
| AllocTapeCtx => AllocTapeCtx
| RandLCtx v2 => RandLCtx v2
| RandRCtx e1 => RandRCtx (subst_map es e1)
| TickCtx => TickCtx
end.
Definition subst_map_ctx (es : stringmap val) (K : list ectx_item) :=
map (subst_map_ctx_item es) K.
Lemma subst_map_fill_item (vs : stringmap val) (Ki : ectx_item) (e : expr) :
subst_map vs (fill_item Ki e) =
fill_item (subst_map_ctx_item vs Ki) (subst_map vs e).
Proof. induction Ki; simpl; eauto with f_equal. Qed.
Lemma subst_map_fill (vs : stringmap val) (K : list ectx_item) (e : expr) :
subst_map vs (fill K e) = fill (subst_map_ctx vs K) (subst_map vs e).
Proof.
generalize dependent e. generalize dependent vs.
induction K as [|Ki K]; eauto.
intros es e. simpl.
by rewrite IHK subst_map_fill_item.
Qed.
*)
Loading

0 comments on commit db8be56

Please sign in to comment.