1.3.0
Version 1.3.0 Release Notes (April 4, 2024)
New features:
-
add
'min_rel_change'
as optional variable in calculation of confidence intervals with
Model.conf_interval()
. (PR #937). -
Model.eval_uncertainty
now takes an optionaldscale
parameter (default value of 0.01) to
set the step size for calculating derivatives (PR #933). -
add calculation of
predicted_interval
toModel.eval_uncertainty
(PR #933).
Bug fixes/enhancements:
-
restore best-fit parameter values for high accuracy values of constrained values (PR #907)
-
improvement to Model for the difference between Parameter, "independent variable", and
"option". With this change, keyword arguments to model functions with non-numerice
default values such asdo_thing=True
, orform='linear'
has those arguments
become clearly identified as independent variables,and use the provided values as
default values. (PR #941) -
better saving/loading saved states of Model now use dill, have several cleanups, and
are now versioned for future-proofing. Also, propagate funcdets for Parameters when
loading a Model. (PR #932, PR #934) -
in the TNC method,
maxfun
is used instead ofmaxiter
. -
fix bug calculating r-squared for fits with weights (PR #921, PR #923)
-
fix bug in
modelresult.eval_uncertainty()
afterload_modelresult()
(PR #909) -
use StringIO for
pandas.read_json
. -
add test for MinimizerResult.uvars after successful fit (PR #913)
-
adding an example using basinhopping, can take other methods as command-line argument
Maintenance/Deprecations:
-
drop support for Python 3.7 that reached EOL on 2023-06-27 (PR #927)
-
fix tests for Python 3.12 and Python 3.13-dev
-
increase minimum numpy verstio to 1.23 and scipy to 1.8.
-
updates for compatibility with numpy 2.0
-
the
dill
package is now required. (#940) -
build switchded to use pyproject.toml (#928)
-
fix broken links in Examples gallery
-
fix intersphinx mapping to scipy docs.