-
Notifications
You must be signed in to change notification settings - Fork 245
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into feat/alignment/dpo
- Loading branch information
Showing
16 changed files
with
999 additions
and
105 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -52,7 +52,8 @@ | |
|
||
<details> | ||
<summary>Latest News 🔥</summary> | ||
|
||
|
||
- [2024/11/6] We release [v0.4.0](https://github.com/linkedin/Liger-Kernel/releases/tag/v0.4.0): Full AMD support, Tech Report, Modal CI, Llama-3.2-Vision! | ||
- [2024/10/21] We have released the tech report of Liger Kernel on Arxiv: https://arxiv.org/pdf/2410.10989 | ||
- [2024/9/6] We release v0.2.1 ([X post](https://x.com/liger_kernel/status/1832168197002510649)). 2500+ Stars, 10+ New Contributors, 50+ PRs, 50k Downloads in two weeks! | ||
- [2024/8/31] CUDA MODE talk, [Liger-Kernel: Real-world Triton kernel for LLM Training](https://youtu.be/gWble4FreV4?si=dxPeIchhkJ36Mbns), [Slides](https://github.com/cuda-mode/lectures?tab=readme-ov-file#lecture-28-liger-kernel) | ||
|
@@ -80,18 +81,12 @@ With one line of code, Liger Kernel can increase throughput by more than 20% and | |
## Examples | ||
|
||
### Basic | ||
|
||
| **Example** | **Description** | **Lightning Studio** | | ||
|------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------| | ||
| [**Hugging Face Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/huggingface) | Train LLaMA 3-8B ~20% faster with over 40% memory reduction on Alpaca dataset using 4 A100s with FSDP | TBA | | ||
| [**Lightning Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/lightning) | Increase 15% throughput and reduce memory usage by 40% with LLaMA3-8B on MMLU dataset using 8 A100s with DeepSpeed ZeRO3 | TBA | | ||
|
||
### Advanced | ||
|
||
| **Example** | **Description** | **Lightning Studio** | | ||
|------------------------------------------------|---------------------------------------------------------------------------------------------------|----------------------| | ||
| [**Medusa Multi-head LLM (Retraining Phase)**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) | Reduce memory usage by 80% with 5 LM heads and improve throughput by 40% using 8 A100s with FSDP | TBA | | ||
| **Use Case** | **Description** | | ||
|------------------------------------------------|---------------------------------------------------------------------------------------------------| | ||
| [**Hugging Face Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/huggingface) | Train LLaMA 3-8B ~20% faster with over 40% memory reduction on Alpaca dataset using 4 A100s with FSDP | | ||
| [**Lightning Trainer**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/lightning) | Increase 15% throughput and reduce memory usage by 40% with LLaMA3-8B on MMLU dataset using 8 A100s with DeepSpeed ZeRO3 | | ||
| [**Medusa Multi-head LLM (Retraining Phase)**](https://github.com/linkedin/Liger-Kernel/tree/main/examples/medusa) | Reduce memory usage by 80% with 5 LM heads and improve throughput by 40% using 8 A100s with FSDP | | | ||
|
||
## Key Features | ||
|
||
|
@@ -102,13 +97,6 @@ With one line of code, Liger Kernel can increase throughput by more than 20% and | |
- **Multi-GPU supported:** Compatible with multi-GPU setups (PyTorch FSDP, DeepSpeed, DDP, etc.). | ||
- **Trainer Framework Integration**: [Axolotl](https://github.com/axolotl-ai-cloud/axolotl), [LLaMa-Factory](https://github.com/hiyouga/LLaMA-Factory), [SFTTrainer](https://github.com/huggingface/trl/releases/tag/v0.10.1), [Hugging Face Trainer](https://github.com/huggingface/transformers/pull/32860), [SWIFT](https://github.com/modelscope/ms-swift) | ||
|
||
## Target Audiences | ||
|
||
- **Researchers**: Looking to compose models using efficient and reliable kernels for frontier experiments. | ||
- **ML Practitioners**: Focused on maximizing GPU training efficiency with optimal, high-performance kernels. | ||
- **Curious Novices**: Eager to learn how to write reliable Triton kernels to enhance training efficiency. | ||
|
||
|
||
## Installation | ||
|
||
### Dependencies | ||
|
@@ -214,23 +202,6 @@ loss = loss_fn(model.weight, input, target) | |
loss.backward() | ||
``` | ||
|
||
|
||
## Structure | ||
|
||
### Source Code | ||
|
||
- `ops/`: Core Triton operations. | ||
- `transformers/`: PyTorch `nn.Module` implementations built on Triton operations, compliant with the `transformers` API. | ||
|
||
### Tests | ||
|
||
- `transformers/`: Correctness tests for the Triton-based layers. | ||
- `convergence/`: Patches Hugging Face models with all kernels, runs multiple iterations, and compares weights, logits, and loss layer-by-layer. | ||
|
||
### Benchmark | ||
|
||
- `benchmark/`: Execution time and memory benchmarks compared to Hugging Face layers. | ||
|
||
## APIs | ||
|
||
### AutoModel | ||
|
@@ -249,7 +220,7 @@ loss.backward() | |
| Mistral | `liger_kernel.transformers.apply_liger_kernel_to_mistral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy | | ||
| Mixtral | `liger_kernel.transformers.apply_liger_kernel_to_mixtral` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy | | ||
| Gemma1 | `liger_kernel.transformers.apply_liger_kernel_to_gemma` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy | | ||
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss | | ||
| Gemma2 | `liger_kernel.transformers.apply_liger_kernel_to_gemma2` | RoPE, RMSNorm, GeGLU, CrossEntropyLoss, FusedLinearCrossEntropy | | ||
| Qwen2 & Qwen2.5 | `liger_kernel.transformers.apply_liger_kernel_to_qwen2` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy | | ||
| Qwen2-VL | `liger_kernel.transformers.apply_liger_kernel_to_qwen2_vl` | RMSNorm, LayerNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy | | ||
| Phi3 & Phi3.5 | `liger_kernel.transformers.apply_liger_kernel_to_phi3` | RoPE, RMSNorm, SwiGLU, CrossEntropyLoss, FusedLinearCrossEntropy | | ||
|
@@ -299,54 +270,17 @@ $$\text{GeGLU}(x)=\text{GELU}(xW+b)\otimes(xV+c)$$ | |
- **Embedding**: [Embedding](https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html) is implemented by fusing embedding lookup and output operations. It achieves a peak speedup of ~1.5x in the forward pass and an overall speedup of ~1.1x. | ||
- **Matmul int2xint8**: is implemented by using the cache tiled matrix multiplication and by fusing the matmul with the unpacking process which achieves a considerable speed up and performs on par with @torch.compile | ||
<!-- TODO: be more specific about batch size --> | ||
> **Note:** | ||
> Reported speedups and memory reductions are with respect to the LLaMA 3-8B Hugging Face layer implementations. All models use 4K hidden size and 4K sequence length and are evaluated based on memory usage and wall time for the forward+backward pass on a single NVIDIA A100 80G GPU using small batch sizes. Liger kernels exhibit more efficient scaling to larger batch sizes, detailed further in the [Benchmark](./benchmark) folder. | ||
## Contributing | ||
|
||
[CONTRIBUTING GUIDE](https://github.com/linkedin/Liger-Kernel/blob/main/CONTRIBUTING.md) | ||
|
||
## Acknowledgement | ||
|
||
|
||
### Design | ||
|
||
- [@claire_yishan](https://twitter.com/claire_yishan) for the LOGO design | ||
- [Wave Snippets](https://www.wavesnippets.com/) for generating the animated code snippets | ||
|
||
### Code | ||
|
||
We referenced or used the following projects: | ||
|
||
|
||
|
||
| # | Project | Description | Location | License | | ||
|---|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------| | ||
| 1 | [Unsloth](https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/unsloth/kernels/utils.py#L43) | `calculate_settings` to determine block size and warp; We reuse it for Norm and MLP | [Liger Kernel Utils](https://github.com/linkedin/Liger-Kernel/blob/e249eee723978bf8610ff1ea2297d048a2417e20/src/liger_kernel/ops/utils.py#L23) | [Apache](https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/LICENSE) | | ||
| 2 | [Unsloth](https://github.com/unslothai/unsloth/blob/976d11a10d54383aeb7a692c69e01151a20bfd72/unsloth/kernels/rms_layernorm.py#L48) | We modified and added dW calculation on top of Unsloth implementation | [Liger Kernel RMS Norm](https://github.com/linkedin/Liger-Kernel/blob/e249eee723978bf8610ff1ea2297d048a2417e20/src/liger_kernel/ops/rms_norm.py#L50) | [Apache](https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/LICENSE) | | ||
| 3 | [Triton tutorial](https://triton-lang.org/main/index.html) | We modified on top of triton tutorials | [Liger Kernel RMS Norm](https://github.com/linkedin/Liger-Kernel/blob/e249eee723978bf8610ff1ea2297d048a2417e20/src/liger_kernel/ops/rms_norm.py#L50) | [MIT](https://github.com/triton-lang/triton/blob/main/LICENSE) | | ||
| 4 | [tiny shakespeare dataset](https://huggingface.co/datasets/karpathy/tiny_shakespeare) | We use tiny shakespeare dataset to conduct convergence test on mini model | [Liger Kernel Convergence](https://github.com/linkedin/Liger-Kernel/tree/main/test/convergence) | N/A | | ||
| 5 | [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy) | We use the idea of gradient-in-forward and chunking | [Liger Kernel Linear Cross Entropy](https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/ops/fused_linear_cross_entropy.py) | [MIT](https://github.com/mgmalek/efficient_cross_entropy/blob/main/LICENSE) | | ||
| 6 | [Flash attn](https://github.com/Dao-AILab/flash-attention) | We take many optimization ideas from the work, such as tiling and recomputation | | [BSD](https://github.com/Dao-AILab/flash-attention/blob/main/LICENSE) | | ||
| 7 | [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) | We reference the design of automodel | [Liger Kernel Auto Model](https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/transformers/auto_model.py) | [MIT](https://github.com/casper-hansen/AutoAWQ/blob/main/LICENSE) | | ||
| 8 | [llm.c](https://github.com/karpathy/llm.c) | We reference the design of end-to-end testing | [Liger Kernel Convergence Tests](https://github.com/linkedin/Liger-Kernel/tree/main/test/convergence) | [MIT](https://github.com/karpathy/llm.c/blob/master/LICENSE) | | ||
|
||
Many thanks to the contributors to these projects for their invaluable work that helped make Liger possible. | ||
|
||
## License | ||
|
||
This project is licensed under the [BSD 2-CLAUSE](https://github.com/linkedin/Liger-Kernel/blob/main/LICENSE) License (see `LICENSE` for details). | ||
It also includes components from projects licensed under: | ||
## Contributing, Acknowledgements, and License | ||
|
||
- Apache License 2.0 (see `LICENSE-APACHE-2.0` for details). | ||
- MIT License (see `LICENSE-MIT-AutoAWQ` for details). | ||
- MIT License (see `LICENSE-MIT-Efficient Cross Entropy` for details). | ||
- MIT License (see `LICENSE-MIT-llmc` for details). | ||
- MIT License (see `LICENSE-MIT-triton` for details). | ||
- [Contributing Guidelines](https://github.com/linkedin/Liger-Kernel/blob/main/docs/CONTRIBUTING.md) | ||
- [Acknowledgements](https://github.com/linkedin/Liger-Kernel/blob/main/docs/Acknowledgement.md) | ||
- [License Information](https://github.com/linkedin/Liger-Kernel/blob/main/docs/License.md) | ||
|
||
## Contact | ||
|
||
- For public discussion, join [our discord channel](https://discord.gg/vNBDpjhb) | ||
- For issues, create a Github ticket in this repository | ||
- For open discussion, join [our discord channel](https://discord.gg/gpumode) | ||
- For formal collaboration, send an email to [email protected] | ||
|
||
## Cite this work | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,28 @@ | ||
from pathlib import Path | ||
|
||
import modal | ||
|
||
ROOT_PATH = Path(__file__).parent.parent.parent | ||
|
||
# tests_bwd is to ensure the backward compatibility of liger with older transformers | ||
image = ( | ||
modal.Image.debian_slim() | ||
.pip_install_from_pyproject( | ||
ROOT_PATH / "pyproject.toml", optional_dependencies=["dev"] | ||
) | ||
.pip_install("transformers==4.44.2") | ||
) | ||
|
||
app = modal.App("liger_tests", image=image) | ||
|
||
# mount: add local files to the remote container | ||
repo = modal.Mount.from_local_dir(ROOT_PATH, remote_path="/root/liger-kernel") | ||
|
||
|
||
@app.function(gpu="A10G", mounts=[repo], timeout=60 * 10) | ||
def liger_tests(): | ||
import subprocess | ||
|
||
subprocess.run(["pip", "install", "-e", "."], check=True, cwd="/root/liger-kernel") | ||
subprocess.run(["make", "test"], check=True, cwd="/root/liger-kernel") | ||
subprocess.run(["make", "test-convergence"], check=True, cwd="/root/liger-kernel") |
Oops, something went wrong.