Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Mobility model alpha parameter regression from data #15

Merged
merged 9 commits into from
Oct 11, 2024
2 changes: 1 addition & 1 deletion notebooks/coo_with_radp_digital_twin.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -522,7 +522,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.6"
"version": "3.11.5"
},
"varInspector": {
"cols": {
Expand Down
362 changes: 362 additions & 0 deletions notebooks/mobility_model.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,362 @@
{
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

  1. generate alpha0 closer to cell where it is first used
  2. update params with re-computed alpha1

"cells": [
{
"cell_type": "markdown",
"id": "ec7ab4ae",
"metadata": {},
"source": [
"# Alpha Optimization in a Gauss-Markov Mobility Model\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "754a70e3",
"metadata": {},
"outputs": [],
"source": [
"import sys\n",
"from pathlib import Path\n",
"sys.path.append(f\"{Path().absolute().parent}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "b3d3ca1a",
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import scipy\n",
"import numpy as np\n",
"from radp_library import *\n",
"import matplotlib.pyplot as plt\n",
"import matplotlib.cm as cm\n",
"from radp.digital_twin.mobility.param_regression import get_predicted_alpha,preprocess_ue_data"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "309ead1f",
"metadata": {},
"outputs": [],
"source": [
"params = {\n",
" \"ue_tracks_generation\": {\n",
" \"params\": {\n",
" \"simulation_duration\": 3600,\n",
" \"simulation_time_interval_seconds\": 0.01,\n",
" \"num_ticks\": 50,\n",
" \"num_batches\": 1,\n",
" \"ue_class_distribution\": {\n",
" \"stationary\": {\n",
" \"count\": 10,\n",
" \"velocity\": 0,\n",
" \"velocity_variance\": 1\n",
" },\n",
" \"pedestrian\": {\n",
" \"count\": 5,\n",
" \"velocity\": 2,\n",
" \"velocity_variance\": 1\n",
" },\n",
" \"cyclist\": {\n",
" \"count\": 5,\n",
" \"velocity\": 5,\n",
" \"velocity_variance\": 1\n",
" },\n",
" \"car\": {\n",
" \"count\": 12,\n",
" \"velocity\": 20,\n",
" \"velocity_variance\": 1\n",
" }\n",
" },\n",
" \"lat_lon_boundaries\": {\n",
" \"min_lat\": -90,\n",
" \"max_lat\": 90,\n",
" \"min_lon\": -180,\n",
" \"max_lon\": 180\n",
" },\n",
" \"gauss_markov_params\": {\n",
" \"alpha\": 0.5,\n",
" \"variance\": 0.8,\n",
" \"rng_seed\": 42,\n",
" \"lon_x_dims\": 100,\n",
" \"lon_y_dims\": 100,\n",
" \"// TODO\": \"Account for supporting the user choosing the anchor_loc and cov_around_anchor.\",\n",
" \"// Current implementation\": \"the UE Tracks generator will not be using these values.\",\n",
" \"// anchor_loc\": {},\n",
" \"// cov_around_anchor\": {}\n",
" }\n",
" }\n",
" }\n",
"}"
]
},
{
"cell_type": "markdown",
"id": "d5d3f4fb",
"metadata": {},
"source": [
"## Generate Data Set 1"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "bf32a451",
"metadata": {},
"outputs": [],
"source": [
"data1 = get_ue_data(params)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0217fb7d",
"metadata": {},
"outputs": [],
"source": [
"data1.head(10)"
]
},
{
"cell_type": "markdown",
"id": "0f112187",
"metadata": {},
"source": [
"## Plot Dataset 1 "
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "57d3c99b",
"metadata": {},
"outputs": [],
"source": [
"plot_ue_tracks(data1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "507f5c0b",
"metadata": {},
"outputs": [],
"source": [
"velocity = preprocess_ue_data(data1)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "60b0bc3b",
"metadata": {},
"outputs": [],
"source": [
"velocity"
]
},
{
"cell_type": "markdown",
"id": "3e4713fc",
"metadata": {},
"source": [
"## Alpha Initialization"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ee3e00c1",
"metadata": {},
"outputs": [],
"source": [
"alpha0 = np.random.choice(np.arange(0, 1.1, 0.1))"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "119f1534",
"metadata": {},
"outputs": [],
"source": [
"print(\"Alpha0:\",alpha0)"
]
},
{
"cell_type": "markdown",
"id": "97a8c1ec",
"metadata": {},
"source": [
"## Regress to Find Alpha 1"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "12fdaf4b",
"metadata": {},
"outputs": [],
"source": [
"alpha1 = get_predicted_alpha(data1,alpha0,seed=42) # Adding seed for reproducibility"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "39eed46d",
"metadata": {},
"outputs": [],
"source": [
"alpha1"
]
},
{
"cell_type": "markdown",
"id": "1dc52c9d",
"metadata": {},
"source": [
"## Generating new data using alpha 1\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "46d7e685",
"metadata": {},
"outputs": [],
"source": [
"#Changing alpha value to alpha1 in the params dictionary\n",
"params['ue_tracks_generation']['params']['gauss_markov_params']['alpha'] = alpha1"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "ab4eb7cd",
"metadata": {},
"outputs": [],
"source": [
"print(params['ue_tracks_generation']['params']['gauss_markov_params']['alpha'])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3c700855",
"metadata": {},
"outputs": [],
"source": [
"data2 = get_ue_data(params)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "18a2b294",
"metadata": {},
"outputs": [],
"source": [
"data2"
]
},
{
"cell_type": "markdown",
"id": "07a4c3aa",
"metadata": {},
"source": [
"## Plot Dataset 2"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "df4b1b11",
"metadata": {},
"outputs": [],
"source": [
"plot_ue_tracks(data2)"
]
},
{
"cell_type": "markdown",
"id": "b727758e",
"metadata": {},
"source": [
"## Regress to Find Alpha 2"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "5a268312",
"metadata": {},
"outputs": [],
"source": [
"alpha2 = get_predicted_alpha(data1,alpha1,seed=42) # Adding seed for reproducibility"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "02575be1",
"metadata": {},
"outputs": [],
"source": [
"alpha2"
]
},
{
"cell_type": "markdown",
"id": "da3b378b",
"metadata": {},
"source": [
"## Comparison Plot of Dataset 1 and Dataset2"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "0798532d",
"metadata": {},
"outputs": [],
"source": [
"plot_ue_tracks_side_by_side(data1, data2)"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "4c61c293",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.5"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
Loading
Loading