Skip to content

Multimodal Masked Autoencoders (M3AE): A JAX/Flax Implementation

License

Notifications You must be signed in to change notification settings

levi-kennedy/m3ae

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multimodal Masked Autoencoders (M3AE): A JAX/Flax Implementation

This is a JAX/Flax re-implementation for the paper Multimodal Masked Autoencoders Learn Transferable Representations.

@article{geng2022multimodal,
  title={Multimodal Masked Autoencoders Learn Transferable Representations},
  author={Geng, Xinyang and Liu, Hao and Lee, Lisa and Schuurams, Dale and Levine, Sergey and Abbeel, Pieter},
  journal={arXiv preprint arXiv:2205.14204},
  year={2022}
}

This implementation has been tested on GPU and Google Cloud TPU and supports multi-host training with TPU Pods. Unliked the original implementation used for the paper, this implementation also supports the following new features:

  • Predicting discretized image tokens from VQGAN as output (similar to BEiT).
  • Training on a combination of paired image-text data (e.g. CC12M) and unpaired text data (e.g. Wikipedia).

Installation

If this is on GPU, replace the following lines in requirements.txt

-f https://storage.googleapis.com/jax-releases/libtpu_releases.html
jax[tpu]==0.3.12

with

--f https://storage.googleapis.com/jax-releases/jax_cuda_releases.html
jax[cuda]==0.3.12

Install the dependencies with pip and add this repo directory to your PYTHONPATH environment variable.

pip install requirements.txt
export PYTHONPATH="$PYTHONPATH:$(pwd)"

Running Experiments

Experiments can be launched via the following commands.

Pre-training MAE (image only model) on Conceptual 12M (CC12M)

python3 -m m3ae.mae_main \
    --mae.model_type='large' \
    --mae.use_type_embedding=False \
    --seed=42 \
    --epochs=100 \
    --lr_warmup_epochs=5 \
    --batch_size=4096 \
    --dataloader_n_workers=16 \
    --log_freq=500 \
    --plot_freq=2000 \
    --save_model_freq=10000 \
    --lr_peak_value=1.5e-4 \
    --weight_decay=0.05 \
    --discretized_image=False \
    --load_checkpoint='' \
    --dataset='cc12m' \
    --cc12m_data.path="<YOUR DATA HDF5 FILE PATH>" \
    --cc12m_data.image_normalization='cc12m'

Pre-training M3AE (image and text model) on Conceptual 12M (CC12M)

python3 -m m3ae.m3ae_main \
    --m3ae.model_type='large' \
    --m3ae.image_mask_ratio=0.75 \
    --m3ae.text_mask_ratio=0.75 \
    --seed=42 \
    --epochs=100 \
    --lr_warmup_epochs=5 \
    --batch_size=4096 \
    --discretized_image=False \
    --dataloader_n_workers=16 \
    --log_freq=500 \
    --plot_freq=2000 \
    --save_model_freq=10000 \
    --image_loss_weight=1.0 \
    --text_loss_weight=0.5 \
    --lr_peak_value=1.5e-4 \
    --weight_decay=0.05 \
    --load_checkpoint='' \
    --data.path="<YOUR DATA HDF5 FILE PATH>" \
    --data.transform_type='pretrain' \
    --data.image_normalization='cc12m'

Linear classification on ImageNet for both pre-trained MAE and M3AE

python3 -m m3ae.linear_main \
    --mae.model_type="large" \
    --mae.use_type_embedding=True \
    --seed=42 \
    --epochs=90 \
    --batch_size=2048 \
    --lr_warmup_epochs=10 \
    --discretized_image=False \
    --dataloader_n_workers=16 \
    --dataloader_shuffle=False \
    --log_freq=500 \
    --save_model_freq=10000 \
    --lr_peak_value=1e-1 \
    --weight_decay=0 \
    --momentum=0.9 \
    --train_data.partition="train" \
    --val_data.partition="val" \
    --train_data.path="<YOUR DATA HDF5 FILE PATH>" \
    --val_data.path="<YOUR DATA HDF5 FILE PATH>" \
    --train_data.transform_type="linear_prob" \
    --val_data.transform_type="test" \
    --load_checkpoint='' \
    --load_pretrained="<YOUR PRE-TRAINED MODEL PATH>"

Finetuning on ImageNet for both pre-trained MAE and M3AE

python3 -m m3ae.finetune_main \
    --seed=42 \
    --mae.model_type=large \
    --mae.drop_path=0.1 \
    --weight_decay=0.05 \
    --mixup_alpha=0.8 \
    --cutmix_alpha=1.0 \
    --switch_prob=0.5 \
    --label_smoothing=0.1 \
    --layer_decay=0.60 \
    --clip_gradient=1e9 \
    --batch_size=1024 \
    --warmup_epochs=5 \
    --epochs=100 \
    --dataloader_n_workers=16 \
    --dataloader_shuffle=False \
    --log_freq=500 \
    --save_model_freq=10000 \
    --lr_peak_value=1e-3 \
    --train_data.partition="train" \
    --val_data.partition="val" \
    --train_data.path="<YOUR DATA HDF5 FILE PATH>" \
    --val_data.path="<YOUR DATA HDF5 FILE PATH>" \
    --train_data.transform_type="finetune" \
    --val_data.transform_type="test" \
    --load_pretrained="<YOUR PRE-TRAINED MODEL PATH>"

HDF5 Data Format

In order to facilitate training on cloud, we store all the dataset as HDF5 files and read them from cloud storage buckets. For paired image and text dataset, the HDF5 data contains two field, jpg and caption. The jpg field is an 1D array containing the raw bytes of JPEG encoded images. The caption field is an 1D array of utf-8 encoded text. For ImageNet dataset, the image JPEG bytes are stored in field train_jpg and val_jpg, and the integer labels are stored in field train_labels and val_labels. For unpaired text only dataset, the utf-8 encoded text is stored in field text.

Pre-trained Model Weights

Pre-trained model weights can be downloaded here. The M3AE and MAE models here are trained for 50 epochs on the CC12M dataset using the hyperparameters specified in the paper.

Credits

Contact

If you have any questions, please open an issue or contact [email protected] and [email protected].

About

Multimodal Masked Autoencoders (M3AE): A JAX/Flax Implementation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%