Skip to content

Commit

Permalink
Update Fri 19 Jan 2024 01:03:22 PM EST
Browse files Browse the repository at this point in the history
  • Loading branch information
avigad committed Jan 19, 2024
1 parent 2f7899e commit d43bad4
Show file tree
Hide file tree
Showing 25 changed files with 1,142 additions and 1,110 deletions.
2 changes: 1 addition & 1 deletion .buildinfo
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: 803b947a09f3db5a52c6c529e3761a53
config: 9821478498fa33697c987b601aae688f
tags: 645f666f9bcd5a90fca523b33c5a78b7
32 changes: 18 additions & 14 deletions C01_Introduction.html
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8" />
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />

<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>1. Introduction &mdash; Mathematics in Lean 0.1 documentation</title>
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
Expand All @@ -15,6 +16,7 @@
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/doctools.js"></script>
<script src="_static/js/theme.js"></script>
<link rel="index" title="Index" href="genindex.html" />
Expand Down Expand Up @@ -83,10 +85,10 @@
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">

<div class="section" id="introduction">
<span id="id1"></span><h1><span class="section-number">1. </span>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline">&#61633;</a></h1>
<div class="section" id="getting-started">
<h2><span class="section-number">1.1. </span>Getting Started<a class="headerlink" href="#getting-started" title="Permalink to this headline">&#61633;</a></h2>
<section id="introduction">
<span id="id1"></span><h1><span class="section-number">1. </span>Introduction<a class="headerlink" href="#introduction" title="Permalink to this heading">&#61633;</a></h1>
<section id="getting-started">
<h2><span class="section-number">1.1. </span>Getting Started<a class="headerlink" href="#getting-started" title="Permalink to this heading">&#61633;</a></h2>
<p>The goal of this book is to teach you to formalize mathematics using the
Lean 4 interactive proof assistant.
It assumes that you know some mathematics, but it does not require much.
Expand Down Expand Up @@ -171,9 +173,9 @@ <h2><span class="section-number">1.1. </span>Getting Started<a class="headerlink
the relevant skills, feel free to move on.
You can always compare your solutions to the ones in the <code class="docutils literal notranslate"><span class="pre">solutions</span></code>
folder associated with each section.</p>
</div>
<div class="section" id="overview">
<h2><span class="section-number">1.2. </span>Overview<a class="headerlink" href="#overview" title="Permalink to this headline">&#61633;</a></h2>
</section>
<section id="overview">
<h2><span class="section-number">1.2. </span>Overview<a class="headerlink" href="#overview" title="Permalink to this heading">&#61633;</a></h2>
<p>Put simply, Lean is a tool for building complex expressions in a formal language
known as <em>dependent type theory</em>.</p>
<p id="index-0">Every expression has a <em>type</em>, and you can use the <cite>#check</cite> command to
Expand Down Expand Up @@ -336,17 +338,19 @@ <h2><span class="section-number">1.2. </span>Overview<a class="headerlink" href=
infrastructure for running this tutorial in VS Code,
and to Scott Morrison and Mario Carneiro for help porting it from Lean 4.
We are also grateful for help and corrections from
Julian Berman, Alex Best,
Bulwi Cha, Bryan Gin-ge Chen, Mauricio Collaris, Johan Commelin, Mark Czubin,
Denis Gorbachev, Winston de Greef,
Takeshi Abe, Julian Berman, Alex Best,
Bulwi Cha, Bryan Gin-ge Chen, Steven Clontz, Mauricio Collaris, Johan Commelin, Mark Czubin,
Alexandru Duca, Denis Gorbachev, Winston de Greef,
Mathieu Guay-Paquet, Julian K&#252;lshammer,
Martin C. Martin,
Giovanni Mascellani, Isaiah Mindich, Hunter Monroe, Pietro Monticone, Oliver Nash,
Bartosz Piotrowski, Nicolas Rolland, Guilherme Silva, Floris van Doorn, and Eric Wieser.
Bartosz Piotrowski, Nicolas Rolland, Keith Rush, Guilherme Silva,
Pedro S&#225;nchez Terraf,
Floris van Doorn, and Eric Wieser.
Our work has been partially supported by the Hoskinson Center for
Formal Mathematics.</p>
</div>
</div>
</section>
</section>


</div>
Expand Down
54 changes: 28 additions & 26 deletions C02_Basics.html
Original file line number Diff line number Diff line change
@@ -1,7 +1,8 @@
<!DOCTYPE html>
<html class="writer-html5" lang="en" >
<head>
<meta charset="utf-8" />
<meta charset="utf-8" /><meta name="generator" content="Docutils 0.17.1: http://docutils.sourceforge.net/" />

<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<title>2. Basics &mdash; Mathematics in Lean 0.1 documentation</title>
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
Expand All @@ -15,6 +16,7 @@
<script data-url_root="./" id="documentation_options" src="_static/documentation_options.js"></script>
<script src="_static/jquery.js"></script>
<script src="_static/underscore.js"></script>
<script src="_static/_sphinx_javascript_frameworks_compat.js"></script>
<script src="_static/doctools.js"></script>
<script async="async" src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
<script src="_static/js/theme.js"></script>
Expand Down Expand Up @@ -87,14 +89,14 @@
<div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
<div itemprop="articleBody">

<div class="section" id="basics">
<span id="id1"></span><h1><span class="section-number">2. </span>Basics<a class="headerlink" href="#basics" title="Permalink to this headline">&#61633;</a></h1>
<section id="basics">
<span id="id1"></span><h1><span class="section-number">2. </span>Basics<a class="headerlink" href="#basics" title="Permalink to this heading">&#61633;</a></h1>
<p>This chapter is designed to introduce you to the nuts and
bolts of mathematical reasoning in Lean: calculating,
applying lemmas and theorems,
and reasoning about generic structures.</p>
<div class="section" id="calculating">
<h2><span class="section-number">2.1. </span>Calculating<a class="headerlink" href="#calculating" title="Permalink to this headline">&#61633;</a></h2>
<section id="calculating">
<h2><span class="section-number">2.1. </span>Calculating<a class="headerlink" href="#calculating" title="Permalink to this heading">&#61633;</a></h2>
<p>We generally learn to carry out mathematical calculations
without thinking of them as proofs.
But when we justify each step in a calculation,
Expand Down Expand Up @@ -138,7 +140,7 @@ <h2><span class="section-number">2.1. </span>Calculating<a class="headerlink" hr
<code class="docutils literal notranslate"><span class="pre">lean4.input.leader</span></code> setting.</p>
<p id="index-2">When a cursor is in the middle of a tactic proof,
Lean reports on the current <em>proof state</em> in the
<em>Lean infoview</em> window.
<em>Lean Infoview</em> window.
As you move your cursor past each step of the proof,
you can see the state change.
A typical proof state in Lean might look as follows:</p>
Expand Down Expand Up @@ -383,9 +385,9 @@ <h2><span class="section-number">2.1. </span>Calculating<a class="headerlink" hr
<span class="n">rw</span> <span class="o">[</span><span class="n">add_mul</span><span class="o">]</span>
</pre></div>
</div>
</div>
<div class="section" id="proving-identities-in-algebraic-structures">
<span id="id2"></span><h2><span class="section-number">2.2. </span>Proving Identities in Algebraic Structures<a class="headerlink" href="#proving-identities-in-algebraic-structures" title="Permalink to this headline">&#61633;</a></h2>
</section>
<section id="proving-identities-in-algebraic-structures">
<span id="id2"></span><h2><span class="section-number">2.2. </span>Proving Identities in Algebraic Structures<a class="headerlink" href="#proving-identities-in-algebraic-structures" title="Permalink to this heading">&#61633;</a></h2>
<p id="index-7">Mathematically, a ring consists of a collection of objects,
<span class="math notranslate nohighlight">\(R\)</span>, operations <span class="math notranslate nohighlight">\(+\)</span> <span class="math notranslate nohighlight">\(\times\)</span>, and constants <span class="math notranslate nohighlight">\(0\)</span>
and <span class="math notranslate nohighlight">\(1\)</span>, and an operation <span class="math notranslate nohighlight">\(x \mapsto -x\)</span> such that:</p>
Expand Down Expand Up @@ -703,9 +705,9 @@ <h2><span class="section-number">2.1. </span>Calculating<a class="headerlink" hr
<cite>noncomm_ring</cite> and <cite>ring</cite>. This is partly for historical reasons,
but also for the convenience of using a shorter name for the
tactic that deals with commutative rings, since it is used more often.</p>
</div>
<div class="section" id="using-theorems-and-lemmas">
<span id="id3"></span><h2><span class="section-number">2.3. </span>Using Theorems and Lemmas<a class="headerlink" href="#using-theorems-and-lemmas" title="Permalink to this headline">&#61633;</a></h2>
</section>
<section id="using-theorems-and-lemmas">
<span id="id3"></span><h2><span class="section-number">2.3. </span>Using Theorems and Lemmas<a class="headerlink" href="#using-theorems-and-lemmas" title="Permalink to this heading">&#61633;</a></h2>
<p id="index-16">Rewriting is great for proving equations,
but what about other sorts of theorems?
For example, how can we prove an inequality,
Expand Down Expand Up @@ -970,9 +972,9 @@ <h2><span class="section-number">2.1. </span>Calculating<a class="headerlink" hr
</div>
<p>If you managed to solve this, congratulations!
You are well on your way to becoming a master formalizer.</p>
</div>
<div class="section" id="more-examples-using-apply-and-rw">
<span id="more-on-order-and-divisibility"></span><h2><span class="section-number">2.4. </span>More examples using apply and rw<a class="headerlink" href="#more-examples-using-apply-and-rw" title="Permalink to this headline">&#61633;</a></h2>
</section>
<section id="more-examples-using-apply-and-rw">
<span id="more-on-order-and-divisibility"></span><h2><span class="section-number">2.4. </span>More examples using apply and rw<a class="headerlink" href="#more-examples-using-apply-and-rw" title="Permalink to this heading">&#61633;</a></h2>
<p id="index-21">The <code class="docutils literal notranslate"><span class="pre">min</span></code> function on the real numbers is uniquely characterized
by the following three facts:</p>
<div class="highlight-lean notranslate"><div class="highlight"><pre><span></span><span class="k">#check</span> <span class="o">(</span><span class="n">min_le_left</span> <span class="n">a</span> <span class="n">b</span> <span class="o">:</span> <span class="n">min</span> <span class="n">a</span> <span class="n">b</span> <span class="bp">&#8804;</span> <span class="n">a</span><span class="o">)</span>
Expand Down Expand Up @@ -1062,9 +1064,8 @@ <h2><span class="section-number">2.1. </span>Calculating<a class="headerlink" hr
<span class="n">apply</span> <span class="n">min_le_left</span>
</pre></div>
</div>
<p>In any case,
whether or not you use these tricks,
we encourage you to prove the following:</p>
<p>We encourage you to prove the following as exercises.
You can use either of the tricks just described to shorten the first.</p>
<div class="highlight-lean notranslate"><div class="highlight"><pre><span></span><span class="kd">example</span> <span class="o">:</span> <span class="n">max</span> <span class="n">a</span> <span class="n">b</span> <span class="bp">=</span> <span class="n">max</span> <span class="n">b</span> <span class="n">a</span> <span class="o">:=</span> <span class="kd">by</span>
<span class="gr">sorry</span>
<span class="kd">example</span> <span class="o">:</span> <span class="n">min</span> <span class="o">(</span><span class="n">min</span> <span class="n">a</span> <span class="n">b</span><span class="o">)</span> <span class="n">c</span> <span class="bp">=</span> <span class="n">min</span> <span class="n">a</span> <span class="o">(</span><span class="n">min</span> <span class="n">b</span> <span class="n">c</span><span class="o">)</span> <span class="o">:=</span> <span class="kd">by</span>
Expand Down Expand Up @@ -1133,13 +1134,13 @@ <h2><span class="section-number">2.1. </span>Calculating<a class="headerlink" hr
<span class="n">apply</span> <span class="n">dvd_mul_left</span>

<span class="kd">example</span> <span class="o">:</span> <span class="n">x</span> <span class="bp">&#8739;</span> <span class="n">x</span> <span class="bp">^</span> <span class="mi">2</span> <span class="o">:=</span> <span class="kd">by</span>
<span class="n">apply</span> <span class="n">dvd_mul_left</span>
<span class="n">apply</span> <span class="n">dvd_mul_left</span>
</pre></div>
</div>
<p>In the last example, the exponent is a natural
number, and applying <code class="docutils literal notranslate"><span class="pre">dvd_mul_left</span></code>
forces Lean to expand the definition of <code class="docutils literal notranslate"><span class="pre">x^2</span></code> to
<code class="docutils literal notranslate"><span class="pre">x</span> <span class="pre">*</span> <span class="pre">x^1</span></code>.
<code class="docutils literal notranslate"><span class="pre">x^1</span> <span class="pre">*</span> <span class="pre">x</span></code>.
See if you can guess the names of the theorems
you need to prove the following:</p>
<div class="highlight-lean notranslate"><div class="highlight"><pre><span></span><span class="kd">example</span> <span class="o">(</span><span class="n">h</span> <span class="o">:</span> <span class="n">x</span> <span class="bp">&#8739;</span> <span class="n">w</span><span class="o">)</span> <span class="o">:</span> <span class="n">x</span> <span class="bp">&#8739;</span> <span class="n">y</span> <span class="bp">*</span> <span class="o">(</span><span class="n">x</span> <span class="bp">*</span> <span class="n">z</span><span class="o">)</span> <span class="bp">+</span> <span class="n">x</span> <span class="bp">^</span> <span class="mi">2</span> <span class="bp">+</span> <span class="n">w</span> <span class="bp">^</span> <span class="mi">2</span> <span class="o">:=</span> <span class="kd">by</span>
Expand Down Expand Up @@ -1172,17 +1173,17 @@ <h2><span class="section-number">2.1. </span>Calculating<a class="headerlink" hr
the one specifically for the natural numbers.
You can use <code class="docutils literal notranslate"><span class="pre">_root_.dvd_antisymm</span></code> to specify the generic one;
either one will work.</p>
</div>
<div class="section" id="proving-facts-about-algebraic-structures">
<span id="id4"></span><h2><span class="section-number">2.5. </span>Proving Facts about Algebraic Structures<a class="headerlink" href="#proving-facts-about-algebraic-structures" title="Permalink to this headline">&#61633;</a></h2>
</section>
<section id="proving-facts-about-algebraic-structures">
<span id="id4"></span><h2><span class="section-number">2.5. </span>Proving Facts about Algebraic Structures<a class="headerlink" href="#proving-facts-about-algebraic-structures" title="Permalink to this heading">&#61633;</a></h2>
<p id="index-27">In <a class="reference internal" href="#proving-identities-in-algebraic-structures"><span class="std std-numref">Section 2.2</span></a>,
we saw that many common identities governing the real numbers hold
in more general classes of algebraic structures,
such as commutative rings.
We can use any axioms we want to describe an algebraic structure,
not just equations.
For example, a <em>partial order</em> consists of a set with a
binary relation that is reflexive and transitive,
binary relation that is reflexive, transitive, and antisymmetric.
like <code class="docutils literal notranslate"><span class="pre">&#8804;</span></code> on the real numbers.
Lean knows about partial orders:</p>
<div class="highlight-lean notranslate"><div class="highlight"><pre><span></span><span class="kd">variable</span> <span class="o">{</span><span class="n">&#945;</span> <span class="o">:</span> <span class="kt">Type</span><span class="bp">*</span><span class="o">}</span> <span class="o">[</span><span class="n">PartialOrder</span> <span class="n">&#945;</span><span class="o">]</span>
Expand All @@ -1191,6 +1192,7 @@ <h2><span class="section-number">2.1. </span>Calculating<a class="headerlink" hr
<span class="k">#check</span> <span class="n">x</span> <span class="bp">&#8804;</span> <span class="n">y</span>
<span class="k">#check</span> <span class="o">(</span><span class="n">le_refl</span> <span class="n">x</span> <span class="o">:</span> <span class="n">x</span> <span class="bp">&#8804;</span> <span class="n">x</span><span class="o">)</span>
<span class="k">#check</span> <span class="o">(</span><span class="n">le_trans</span> <span class="o">:</span> <span class="n">x</span> <span class="bp">&#8804;</span> <span class="n">y</span> <span class="bp">&#8594;</span> <span class="n">y</span> <span class="bp">&#8804;</span> <span class="n">z</span> <span class="bp">&#8594;</span> <span class="n">x</span> <span class="bp">&#8804;</span> <span class="n">z</span><span class="o">)</span>
<span class="k">#check</span> <span class="o">(</span><span class="n">le_antisymm</span> <span class="o">:</span> <span class="n">x</span> <span class="bp">&#8804;</span> <span class="n">y</span> <span class="bp">&#8594;</span> <span class="n">y</span> <span class="bp">&#8804;</span> <span class="n">x</span> <span class="bp">&#8594;</span> <span class="n">x</span> <span class="bp">=</span> <span class="n">y</span><span class="o">)</span>
</pre></div>
</div>
<p>Here we are adopting the Mathlib convention of using
Expand Down Expand Up @@ -1387,8 +1389,8 @@ <h2><span class="section-number">2.1. </span>Calculating<a class="headerlink" hr
</div>
<p>We recommend making use of the theorem <code class="docutils literal notranslate"><span class="pre">nonneg_of_mul_nonneg_left</span></code>.
As you may have guessed, this theorem is called <code class="docutils literal notranslate"><span class="pre">dist_nonneg</span></code> in Mathlib.</p>
</div>
</div>
</section>
</section>


</div>
Expand Down
Loading

0 comments on commit d43bad4

Please sign in to comment.