Skip to content

HKUST CSE 2023 final year project for end-to-end 3D dog reconstruction from single image.

License

Notifications You must be signed in to change notification settings

lastbasket/HKUST-CSE-FYP-CQF6

Repository files navigation

HKUST-CSE-FYP-CQF6

HKUST CSE 2023 final year project for end-to-end 3D dog reconstruction from single image.

About HKUST CSE FYP CQF-6

From left to right: original input, masked input, predicted segmentation, predicted 3D dog

Dependencies

  1. Python 3.7.10
  2. Pytorch 1.9.0+cu111
    pip install torch==1.9.0+cu111 torchvision==0.10.0+cu111 torchaudio==0.9.0 -f https://download.pytorch.org/whl/torch_stable.html
    
  3. neural_renderer

Download datasets

Extract to 'HKUST-CSE-FYP-CQF6/data'

Pretrained Models

The pretrained model for gernerating geometry for neural texture field.

Demo

  • Train the texture field with any image.
# Modify --pretrained $PRETRAINED to your pretrained model path and --input for the input image path 
# Add --save_checkpoint if you want to save the checkpoint
sh texture_field_demo.sh

Visualize

  • Visualize the generate 3D model (saved in npz).
python SMALViewer/smal_viewer.py --input $INPUT_NPZ

Train

  • Train stage 1
# If train with texture decoder: add --color in the script
sh train_s1.sh
  • Train stage 2
# If train with texture decoder: add --color in the script
# Modify --resume $STAGE1_CHECKPOINT to your stage 1 checkpoint path.
sh train_s2.sh
  • Train stage 3
# If train with texture decoder: add --color in the script
# Modify --resume $STAGE2_CHECKPOINT to your stage 2 checkpoint path.
sh train_s3.sh
  • Train the texture field from StandfordExtra testing set
# Modify --pretrained $PRETRAINED to your pretrained model path and --img_idx 10 to the image index you want to train on.
sh train_vanilla_field.sh

Full Env list

certifi             2022.12.7
contourpy           1.0.7
cycler              0.11.0
dr-batch-dib-render 0.0.0
fonttools           4.38.0
fvcore              0.1.5.post20221221
imageio             2.25.0
iopath              0.1.10
kaolin              0.14.0a0 
kiwisolver          1.4.4
lazy_loader         0.1
matplotlib          3.6.3
networkx            3.0
numpy               1.24.2
opencv-python       4.7.0.68
packaging           23.0
Pillow              9.4.0
pip                 22.3.1
plyfile             0.7.4
portalocker         2.7.0
protobuf            3.20.1
pyparsing           3.0.9
python-dateutil     2.8.2
pytorch3d           0.6.0              
PyWavelets          1.4.1
PyYAML              6.0
scikit-image        0.20.0rc4
scipy               1.9.1
setuptools          65.6.3
six                 1.16.0
soft-renderer       1.0.0
tabulate            0.9.0
tensorboardX        2.5.1
termcolor           2.2.0
tifffile            2023.2.3
torch               1.9.0+cu111
torchaudio          0.9.0
torchvision         0.10.0+cu111
tqdm                4.64.1
typing_extensions   4.4.0
usd-core            22.5.post1
VoGE                0.2.0
wheel               0.37.1
yacs                0.1.8

Acknowledgements

This work was completed in relation to the paperCoarse-to-fine Animal Pose and Shape Estimation:

@article{li2021coarse,
  title={Coarse-to-fine animal pose and shape estimation},
  author={Li, Chen and Lee, Gim Hee},
  journal={Advances in Neural Information Processing Systems},
  volume={34},
  pages={11757--11768},
  year={2021}
}

and Creatures Great and SMAL: Recovering the shape and motion of animals from video:

@inproceedings{biggs2018creatures,
  title={{C}reatures great and {SMAL}: {R}ecovering the shape and motion of animals from video},
  author={Biggs, Benjamin and Roddick, Thomas and Fitzgibbon, Andrew and Cipolla, Roberto},
  booktitle={ACCV},
  year={2018}
}

and Who Left the Dogs Out? 3D Animal Reconstruction with Expectation Maximization in the Loop:

@inproceedings{biggs2020wldo,
  title={{W}ho left the dogs out?: {3D} animal reconstruction with expectation maximization in the loop},
  author={Biggs, Benjamin and Boyne, Oliver and Charles, James and Fitzgibbon, Andrew and Cipolla, Roberto},
  booktitle={ECCV},
  year={2020}
}

and the original authors of the SMAL animal model:

@inproceedings{Zuffi:CVPR:2017,
  title = {{3D} Menagerie: Modeling the {3D} Shape and Pose of Animals},
  author = {Zuffi, Silvia and Kanazawa, Angjoo and Jacobs, David and Black, Michael J.},
  booktitle = {IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)},
  month = jul,
  year = {2017},
  month_numeric = {7}
}

and we would also like to thanks the author of SMALViewer

About

HKUST CSE 2023 final year project for end-to-end 3D dog reconstruction from single image.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published