The unofficial reproduction for the ECCV 2024 paper Tracking Meets LoRA: Faster Training, Larger Model, Stronger Performance within the pytracking-like framework.
Official Link: https://github.com/LitingLin/LoRAT
[Models] Extraction Code:4EeS
conda create -n lorat python=3.9
conda activate lorat
bash install.sh
Run the following command to set paths for this project
python tracking/create_default_local_file.py --workspace_dir . --data_dir ./data --save_dir ./output
After running this command, you can also modify paths by editing these two files
lib/train/admin/local.py # paths about training
lib/test/evaluation/local.py # paths about testing
Put the tracking datasets in ./data. It should look like this:
${PROJECT_ROOT}
-- data
-- lasot
|-- airplane
|-- basketball
|-- bear
...
-- got10k
|-- test
|-- train
|-- val
-- coco
|-- annotations
|-- images
-- trackingnet
|-- TRAIN_0
|-- TRAIN_1
...
|-- TRAIN_11
|-- TEST
This repository support the downstream fine-tuning of LoRAT, not the training from the scratch(i.e., we do not implement insert and merge methods of LoRA
).
Run:
bash xtrain.sh
Download the model weights from Quark Drive
Put the downloaded weights on $PROJECT_ROOT$/pretrained
Change the corresponding values of lib/test/evaluation/local.py
to the actual benchmark saving paths
Run:
bash ytest.sh
# Profiling base_224
python tracking/profile_model.py --script lorat --config base_224
# Profiling base_378
python tracking/profile_model.py --script lorat --config base_378
# Profiling large_224
python tracking/profile_model.py --script lorat --config large_224
# Profiling large_378
python tracking/profile_model.py --script lorat --config large_378
# Profiling giant_224
python tracking/profile_model.py --script lorat --config giant_224
# Profiling giant_378
python tracking/profile_model.py --script lorat --config giant_378
Tracker | GOT-10K (AO) | LaSOT (AUC) | TrackingNet (AUC) | LaSOT_Ext(AUC) | TNL2K(AUC) |
---|---|---|---|---|---|
base_224 | 72.1 | 71.7 | 83.5 | 50.3 | 57.3 |
base_378 | 73.7 | 72.9 | 84.2 | 53.1 | 58.4 |
large_224 | 75.7 | 74.2 | 85.0 | 52.8 | 59.5 |
large_378 | 77.5 | 75.1 | 85.6 | 56.6 | 60.7 |
giant_224 | 77.7 | 74.9 | 85.2 | 53.3 | 60.2 |
giant_378 | 78.9 | 76.2 | 86.0 | 56.5 | 61.1 |