Skip to content

Joint Optimization Framework for Learning with Noisy Labels

Notifications You must be signed in to change notification settings

labyrinth7x/JointOptimization

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Joint Optimization Framework for Learning with Noisy Labels

This is an implmentation for the paper Joint Optimization Framework for Learning with Nosiy Labels
The official implementation is by Chainer.here

Requirement

  • Python 3.5
  • Pytorch 0.4 & torchvision
  • numpy
  • matplotlib (not necessary unless the need for the result figure)

Network

The backbone of the network is Resnet-34.
It is implemented in /models/renset.py.
Here only Resnet-34 and Resnet-18 is available.

Train

There are two steps to folllow.

  • First: Train the noisy dataset and update labels.
    Train the network on the Symmetric Noise CIFAR-10 dataset:
python train.py --gpus 0 --noise_ratio 0.2 --alpha 0.8 --beta 0.4 --dataset_type "sym_noise"  

Train the network on the Asymmetric Noise CIFAR-10 dataset:

python train.py --gpus 0 --noise_ratio 0.2 --alpha 0.8 --beta 0.4 --dataset_type "asym_noise" 
  • Second: Retrain the updated dataset.
    Train the network on the Symmetric Noise CIFAR-10 dataset:
python retrain.py --gpus 0 --lr 0.2 --lr_train 0.03 --noise_ratio 0.2 --alpha 0.8 --beta 0.4 --dataset_type "sym_noise"  

Train the network on the Asymmetric Noise CIFAR-10 dataset:

python retrain.py --gpus 0 --lr 0.2 --lr_train 0.03 --noise_ratio 0.2 --alpha 0.8 --beta 0.4 --dataset_type "asym_noise"  

supplement intro:
The params used in retrain.py, such as lr_train, alpha and beta, are only used to determine the root for update labels.
So all these params can be merged into one param --labels_root.

References

  • D. Tanaka, D. Ikami, T. Yamasaki and K. Aizawa. "Joint Optimization Framework for Learning with Noisy Labels", in CVPR, 2018.
  • Another unofficial implementation for the same paper. here

About

Joint Optimization Framework for Learning with Noisy Labels

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages