Skip to content

Everything about Transfer Learning and Domain Adaptation--迁移学习

License

Notifications You must be signed in to change notification settings

kristine-li/transferlearning

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

迁移学习 Transfer Learning

Awesome MIT License LICENSE 996.icu

Everything about Transfer Learning (Probably the most complete repository?). Your contribution is highly valued! If you find this repo helpful, please cite it as follows:

关于迁移学习的所有资料,包括:介绍、综述文章、最新文章、代表工作及其代码、常用数据集、硕博士论文、比赛等等。(可能是目前最全的迁移学习资料库?) 欢迎一起贡献! 如果认为本仓库有用,请在你的论文和其他出版物中进行引用!

@Misc{transferlearning.xyz,
howpublished = {\url{http://transferlearning.xyz}},   
title = {Everything about Transfer Learning and Domain Adapation},  
author = {Wang, Jindong and others}  
}  
Contents
0.Latest Publications (最新论文) 1.Introduction and Tutorials (简介与教程)
2.Transfer Learning Areas and Papers (研究领域与相关论文) 3.Theory and Survey (理论与综述)
4.Code (代码) 5.Transfer Learning Scholars (著名学者)
6.Transfer Learning Thesis (硕博士论文) 7.Datasets and Benchmarks (数据集与评测结果)
8.Transfer Learning Challenges (迁移学习比赛) Applications (迁移学习应用)
Other Resources (其他资源) Contributing (欢迎参与贡献)

关于机器学习和行为识别的资料,请参考:行为识别机器学习


0.Latest Publications (最新论文)

A good website to see the latest arXiv preprints by search: Transfer learning, Domain adaptation

一个很好的网站,可以直接看到最新的arXiv文章: Transfer learning, Domain adaptation

迁移学习文章汇总 Awesome transfer learning papers

更多 More...


1.Introduction and Tutorials (简介与教程)

Want to quickly learn transfer learning?想尽快入门迁移学习?看下面的教程。


2.Transfer Learning Areas and Papers (研究领域与相关论文)

Related articles by research areas:

Paperweekly: 一个推荐、分享论文的网站比较好,上面会持续整理相关的文章并分享阅读笔记。


3.Theory and Survey (理论与综述)

Here are some articles on transfer learning theory and survey.

Survey (综述文章):

Theory (理论文章):


4.Code (代码)

请见这里 | Please see HERE for some popular transfer learning codes.

See HERE for an instant run using Google's Colab.


5.Transfer Learning Scholars (著名学者)

Here are some transfer learning scholars and labs.

全部列表以及代表工作性见这里

Please note that this list is far not complete. A full list can be seen in here. Transfer learning is an active field. If you are aware of some scholars, please add them here.

  • General transfer learning algorithms and applications:

    • Qiang Yang:中文名杨强。香港科技大学计算机系讲座教授,迁移学习领域世界性专家。IEEE/ACM/AAAI/IAPR/AAAS fellow。[Google scholar]

    • Sinno Jialin Pan:杨强的学生,香港科技大学博士,现任新加坡南洋理工大学助理教授。迁移学习领域代表性综述A survey on transfer learning的第一作者(Qiang Yang是二作)。[Google scholar]

  • Transfer learning algorithms:

    • Wenyuan Dai:中文名戴文渊,上海交通大学硕士,现任第四范式人工智能创业公司CEO。迁移学习领域著名的牛人,在顶级会议上发表多篇高水平文章,每篇论文引用量巨大。[Google scholar]

    • Mingsheng Long:中文名龙明盛,清华大学博士,现任清华大学助理教授、博士生导师。[Google scholar]

    • Lixin Duan:中文名段立新,新加坡南洋理工大学博士,现就职于电子科技大学,教授。[Google scholar]

  • Transfer learning + computer vision

  • Transfer learning + recommendation systems

    • Weike Pan:中文名潘微科,杨强的学生,现任深圳大学副教授,香港科技大学博士毕业。主要做迁移学习在推荐系统方面的一些工作。 [Google Scholar]

    • Fuzhen Zhuang:中文名庄福振,中科院计算所博士,现任中科院计算所副研究员。[Google scholar]

  • Online transfer learning:

    • Qingyao Wu:中文名吴庆耀,现任华南理工大学副教授。主要做在线迁移学习、异构迁移学习方面的研究。[Google scholar]
  • Theory:

    • Tongliang Liu:中文名刘同亮,现任悉尼大学助理教授。主要做迁移学习的一些理论方面的工作。[Google scholar]

6.Transfer Learning Thesis (硕博士论文)

Here are some popular thesis on transfer learning.

硕博士论文可以让我们很快地对迁移学习的相关领域做一些了解,同时,也能很快地了解概括相关研究者的工作。其中,比较有名的有

其他的文章,请见完整版


7.Datasets and Benchmarks (数据集与评测结果)

Please see HERE for the popular transfer learning datasets and benchmark results.

这里整理了常用的公开数据集和一些已发表的文章在这些数据集上的实验结果。


8.Transfer Learning Challenges (迁移学习比赛)


Applications (迁移学习应用)

See HERE for transfer learning applications.

迁移学习应用请见这里


Other Resources (其他资源)


Contributing (欢迎参与贡献)

If you are interested in contributing, please refer to HERE for instructions in contribution.


Copyright notice

[Notes]This Github repo can be used by following the corresponding licenses. I want to emphasis that it may contain some PDFs or thesis, which were downloaded by me and can only be used for academic purposes. The copyrights of these materials are owned by corresponding publishers or organizations. All this are for better adademic research. If any of the authors or publishers have concerns, please contact me to delete or replace them.

[文章版权声明]这个仓库可以遵守相关的开源协议进行使用。这个仓库中包含有很多研究者的论文、硕博士论文等,都来源于在网上的下载,仅作为学术研究使用。我对其中一些文章都写了自己的浅见,希望能很好地帮助理解。这些文章的版权属于相应的出版社。如果作者或出版社有异议,请联系我进行删除。一切都是为了更好地学术!

About

Everything about Transfer Learning and Domain Adaptation--迁移学习

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 70.3%
  • MATLAB 20.4%
  • Jupyter Notebook 9.2%
  • Shell 0.1%