Skip to content

kmbmjn/DropoutCorrectly

Repository files navigation

DropoutCorrectly

This repository contains Python source code for ``How to Use Dropout Correctly on Residual Networks with Batch Normalization''

Works with Python 3.6+ and PyTorch 1.7+.

predropout_postdropout.py

Used for Figure 1 for the empirical validation on proposition 2. Simply run ``python predropout_postdropout.py''

residual_nonresidual.py

Used for Figure 2 for the empirical validations on propositions 3 and 4.

preresnetdropout_cifar.py

Used for CIFAR experiments.

train.py and my_model.py

Used for Pet and Caltech experiments. The code requires hyperparameter arguments, such as the following: ``python train.py --model_name my_resnetv2_50_p6_f --mode train --data_name pet --hp_opt sgd --hp_lr 1e-1 --hp_wd 5e-3 --hp_bs 128 --hp_ep 200 --hp_id 0''

densenet_h4.py

Used for head experiments.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages