Skip to content

cors policy

cors policy #5

Workflow file for this run

name: workflow
on:
push:
branches:
- main
paths-ignore:
- 'README.md'
permissions:
id-token: write
contents: read
jobs:
integration:
name: Continuous Integration
runs-on: ubuntu-latest
steps:
- name: Checkout Code
uses: actions/checkout@v3
- name: Lint code
run: echo "Linting repository"
- name: Run unit tests
run: echo "Running unit tests"
build-and-push-ecr-image:
name: Continuous Delivery
needs: integration
runs-on: ubuntu-latest
steps:
- name: Checkout Code
uses: actions/checkout@v3
- name: Install Utilities
run: |
sudo apt-get update
sudo apt-get install -y jq unzip
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v1
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ secrets.AWS_REGION }}
- name: Login to Amazon ECR
id: login-ecr
uses: aws-actions/amazon-ecr-login@v1
- name: Build, tag, and push image to Amazon ECR
id: build-image
env:
ECR_REGISTRY: ${{ steps.login-ecr.outputs.registry }}
ECR_REPOSITORY: ${{ secrets.ECR_REPOSITORY_NAME }}
IMAGE_TAG: latest
run: |
# Build a docker container and
# push it to ECR so that it can
# be deployed to ECS.
docker build -t $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG .
docker push $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG
echo "::set-output name=image::$ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG"
Continuous-Deployment:
needs: build-and-push-ecr-image
runs-on: self-hosted
steps:
- name: Checkout
uses: actions/checkout@v3
- name: Configure AWS credentials
uses: aws-actions/configure-aws-credentials@v1
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: ${{ secrets.AWS_REGION }}
- name: Login to Amazon ECR
id: login-ecr
uses: aws-actions/amazon-ecr-login@v1
- name: Pull latest images
run: |
docker pull ${{secrets.AWS_ECR_LOGIN_URI}}/${{ secrets.ECR_REPOSITORY_NAME }}:latest
# - name: Stop and remove container if running
# run: |
# docker ps -q --filter "name=mlproj" | grep -q . && docker stop mlproj && docker rm -fv mlproj
- name: Run Docker Image to serve users
run: |
docker run -d -p 8080:8080 --name=mlproj -e 'AWS_ACCESS_KEY_ID=${{ secrets.AWS_ACCESS_KEY_ID }}' -e 'AWS_SECRET_ACCESS_KEY=${{ secrets.AWS_SECRET_ACCESS_KEY }}' -e 'AWS_REGION=${{ secrets.AWS_REGION }}' ${{secrets.AWS_ECR_LOGIN_URI}}/${{ secrets.ECR_REPOSITORY_NAME }}:latest
- name: Clean previous images and containers
run: |
docker system prune -f