Skip to content

Keras implementation of musicnn, a set of pre-trained deep convolutional neural networks for music audio tagging

License

Notifications You must be signed in to change notification settings

jwang1993/musicnn_keras

 
 

Repository files navigation

musicnn_keras

Musicnn_keras is a tf.keras implementation of musicnn, originally written in "pure" TensorFlow. Musicnn_keras is aimed at making musicnn accessible via the popular tf.keras interface.

Pronounced as "musician", musicnn is a set of pre-trained musically motivated convolutional neural networks for music audio tagging. This repository also includes some pre-trained vgg-like baselines.

Check the documentation and our basic / advanced examples to understand how to use musicnn.

Do you have questions? Check the FAQs.

Installation

pip install musicnn_keras

Or clone the repository and install from source:

git clone https://github.com/Quint-e/musicnn_keras/musicnn_keras.git

python setup.py install

Dependencies: Tensorflow>=2.0, librosa>=0.7.0 and numpy<1.17,>=1.14.5.

Load pre-trained models

Pre-trained models are available in musicnn_keras/keras_checkpoints/

Loading pre-trained model is simply achieved by using the dedicated tf.keras API:

import tensorflow as tf
musicnn = tf.keras.models.load_model('./musicnn_keras/keras_checkpoints/MSD_musicnn.h5')

musicnn can then be used like any other keras model.

Note that if you are only interested in loading the pre-trained models in your code, you do not need to install the musicnn_keras package. tf.keras.models.load_model is sufficient.

Transfer Learning

One may want to access intermediate layers of the models, for extracting features and/or transfer learning applications. This is easily achieved in python by creating a truncated model.

For example, truncating at the penultimate layer of musicnn:

import tensorflow as tf
keras_model = tf.keras.models.load_model('./musicnn_keras/keras_checkpoints/MSD_musicnn.h5')
truncated_model = tf.keras.Model(keras_model.input,keras_model.get_layer('bn_dense').output)

Or the output of the max-pooling of the 3rd layer of a vgg model:

import tensorflow as tf
keras_model = tf.keras.models.load_model('./musicnn_keras/keras_checkpoints/MSD_vgg.h5')
truncated_model = tf.keras.Model(keras_model.input,keras_model.get_layer('pool3').output)

The truncated_model can then be used as any other tf.keras model, for example using truncated_model.predict() to get features.

One may also want to add new, "fresh" layer(s) to the truncated model. Again, this can be achieved with the usual keras Model api. For example, adding a dense layer with 200 units at the top of the truncated model:

input_layer = tf.keras.Input(shape=input_shape)
x = truncated_model(input_layer)
x = tf.keras.layers.Dense(units=200,activation=tf.nn.relu)(x)
new_model = tf.keras.Model(input_layer, x)

Again, new_model can then be used like any other tf.keras model. For example using new_model.fit() to train on new data.

Predict tags

From within python, you can estimate the topN tags:

from musicnn_keras.tagger import top_tags
top_tags('./audio/joram-moments_of_clarity-08-solipsism-59-88.mp3', model='MTT_musicnn', topN=10)

['techno', 'electronic', 'synth', 'fast', 'beat', 'drums', 'no vocals', 'no vocal', 'dance', 'beats']

Let's try another song!

top_tags('./audio/TRWJAZW128F42760DD_test.mp3')

['guitar', 'piano', 'fast']

From the command-line, you can also print the topN tags on the screen:

python -m musicnn_keras.tagger file_name.ogg --print
python -m musicnn_keras.tagger file_name.au --model 'MSD_musicnn' --topN 3 --length 3 --overlap 1.5 --print

or save to a file:

python -m musicnn_keras.tagger file_name.wav --save out.tags
python -m musicnn_keras.tagger file_name.mp3 --model 'MTT_musicnn' --topN 10 --length 3 --overlap 1 --print --save out.tags

Extract the Taggram

You can also compute the taggram using python (see our basic example for more details on how to depict it):

from musicnn_keras.extractor import extractor
taggram, tags = extractor('./audio/joram-moments_of_clarity-08-solipsism-59-88.mp3', model='MTT_musicnn')

Taggram

The above analyzed music clips are included in the ./audio/ folder of this repository.

musicnn_keras and musicnn

This repo mirrors the contents of the original musicnn repository, adapted to tf.keras. As a result, some of the code and examples used in this repository came from the original musicnn repo.

About

Keras implementation of musicnn, a set of pre-trained deep convolutional neural networks for music audio tagging

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 95.8%
  • Python 4.2%