Musicnn_keras
is a tf.keras implementation of musicnn, originally written in "pure" TensorFlow.
Musicnn_keras
is aimed at making musicnn accessible via the popular tf.keras interface.
Pronounced as "musician", musicnn
is a set of pre-trained musically motivated convolutional neural networks for music audio tagging. This repository also includes some pre-trained vgg-like baselines.
Check the documentation and our basic / advanced examples to understand how to use musicnn
.
Do you have questions? Check the FAQs.
pip install musicnn_keras
Or clone the repository and install from source:
git clone https://github.com/Quint-e/musicnn_keras/musicnn_keras.git
python setup.py install
Dependencies: Tensorflow>=2.0
, librosa>=0.7.0
and numpy<1.17,>=1.14.5
.
Pre-trained models are available in musicnn_keras/keras_checkpoints/
Loading pre-trained model is simply achieved by using the dedicated tf.keras API:
import tensorflow as tf
musicnn = tf.keras.models.load_model('./musicnn_keras/keras_checkpoints/MSD_musicnn.h5')
musicnn
can then be used like any other keras model.
Note that if you are only interested in loading the pre-trained models in your code, you do not need to install the musicnn_keras
package. tf.keras.models.load_model
is sufficient.
One may want to access intermediate layers of the models, for extracting features and/or transfer learning applications. This is easily achieved in python by creating a truncated model.
For example, truncating at the penultimate layer of musicnn:
import tensorflow as tf
keras_model = tf.keras.models.load_model('./musicnn_keras/keras_checkpoints/MSD_musicnn.h5')
truncated_model = tf.keras.Model(keras_model.input,keras_model.get_layer('bn_dense').output)
Or the output of the max-pooling of the 3rd layer of a vgg model:
import tensorflow as tf
keras_model = tf.keras.models.load_model('./musicnn_keras/keras_checkpoints/MSD_vgg.h5')
truncated_model = tf.keras.Model(keras_model.input,keras_model.get_layer('pool3').output)
The truncated_model
can then be used as any other tf.keras model, for example using truncated_model.predict()
to get features.
One may also want to add new, "fresh" layer(s) to the truncated model. Again, this can be achieved with the usual keras Model api. For example, adding a dense layer with 200 units at the top of the truncated model:
input_layer = tf.keras.Input(shape=input_shape)
x = truncated_model(input_layer)
x = tf.keras.layers.Dense(units=200,activation=tf.nn.relu)(x)
new_model = tf.keras.Model(input_layer, x)
Again, new_model
can then be used like any other tf.keras model. For example using new_model.fit()
to train on new data.
From within python, you can estimate the topN tags:
from musicnn_keras.tagger import top_tags
top_tags('./audio/joram-moments_of_clarity-08-solipsism-59-88.mp3', model='MTT_musicnn', topN=10)
['techno', 'electronic', 'synth', 'fast', 'beat', 'drums', 'no vocals', 'no vocal', 'dance', 'beats']
Let's try another song!
top_tags('./audio/TRWJAZW128F42760DD_test.mp3')
['guitar', 'piano', 'fast']
From the command-line, you can also print the topN tags on the screen:
python -m musicnn_keras.tagger file_name.ogg --print
python -m musicnn_keras.tagger file_name.au --model 'MSD_musicnn' --topN 3 --length 3 --overlap 1.5 --print
or save to a file:
python -m musicnn_keras.tagger file_name.wav --save out.tags
python -m musicnn_keras.tagger file_name.mp3 --model 'MTT_musicnn' --topN 10 --length 3 --overlap 1 --print --save out.tags
You can also compute the taggram using python (see our basic example for more details on how to depict it):
from musicnn_keras.extractor import extractor
taggram, tags = extractor('./audio/joram-moments_of_clarity-08-solipsism-59-88.mp3', model='MTT_musicnn')
The above analyzed music clips are included in the ./audio/
folder of this repository.
This repo mirrors the contents of the original musicnn repository, adapted to tf.keras. As a result, some of the code and examples used in this repository came from the original musicnn repo.