Skip to content

jtmyles/sompz_y6

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

sompz_y6

Setting up the environment

You need to set up a Python 3 sompz enviroment and a Jupyter interpreter with the packages listed in requierments.txt and the twopoint, which is not currently avaible in conda. In a terminal inside the sompz_y6 folder, run:

$ module load python $ conda config --append channels conda-forge
$ conda create --name sompz python=3.10.9 ipykernel --file requirements.txt
$ conda activate sompz
$ pip install twopoint
$ python -m ipykernel install --user --name sompz --display-name SOMPZ \

If you running at nersc, you need to also need the following 2 commands to make your mpi4py work properly

$ module swap PrgEnv-${PE_ENV,,} PrgEnv-gnu
$ MPICC="cc -shared" pip install --force-reinstall --no-cache-dir --no-binary=mpi4py mpi4py\

You only need to run the commands above once. Now, when you want to use the sompz enviroment just run

$ conda activate sompz

or select the SOMPZ kernel in your Jupyter notebook.

Train Phase

The train_ files are reference files to train the deep and wide SOMs

  • Train deep som
    • Use deep catalog
  • Train wide some
    • Use subsample of the wide catalog

Assign Phase

The assign_ files are reference files to assign the deep, balrog and wide catalogs to their respective SOMs

  • Assign catalogs to deep som: deep and balrog
  • Assign catalogs to wide som: wide and balrog

Redshifts Estimation

The compute_redshifts.ipynb notebook contains all the steps to estimate the N(z)s for the wide catalog

  • Read deep, wide and balrog catalogs
  • Create dataframes for each catalog and add cell assignment information
  • Compute pcchat (transfer matrix) using balrog assignments in deep and wide
  • Compute pzc and pzchat
  • Compute N(z)s
  • Save everything in h5 file (input for the 2pt pipeline)

Papers to Cite

Please cite the following papers if you use this code in your research:

  1. A. Campos et al. (DES Collaboration) - Enhancing weak lensing redshift distribution characterization by optimizing the Dark Energy Survey Self-Organizing Map Photo-z method (in preparation)
  2. C. Sánchez, M. Raveri, A. Alarcon, G. Bernstein - Propagating sample variance uncertainties in redshift calibration: simulations, theory, and application to the COSMOS2015 data
  3. R. Buchs, et al. - Phenotypic redshifts with self-organizing maps: A novel method to characterize redshift distributions of source galaxies for weak lensing
  4. J. Myles, A. Alarcon, et al. (DES Collaboration) - Dark Energy Survey Year 3 results: redshift calibration of the weak lensing source galaxies

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 76.6%
  • Python 23.2%
  • Shell 0.2%