Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Add option to eigs() to turn off eigenvector computation #3057

Merged
merged 7 commits into from
Oct 20, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions src/expression/embeddedDocs/function/matrix/eigs.js
Original file line number Diff line number Diff line change
Expand Up @@ -4,9 +4,10 @@ export const eigsDocs = {
syntax: [
'eigs(x)'
],
description: 'Calculate the eigenvalues and eigenvectors of a real symmetric matrix',
description: 'Calculate the eigenvalues and optionally eigenvectors of a square matrix',
examples: [
'eigs([[5, 2.3], [2.3, 1]])'
'eigs([[5, 2.3], [2.3, 1]])',
'eigs([[1, 2, 3], [4, 5, 6], [7, 8, 9]], { precision: 1e-6, eigenvectors: false }'
],
seealso: [
'inv'
Expand Down
73 changes: 48 additions & 25 deletions src/function/matrix/eigs.js
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ export const createEigs = /* #__PURE__ */ factory(name, dependencies, ({ config,
const doComplexEigs = createComplexEigs({ config, addScalar, subtract, multiply, multiplyScalar, flatten, divideScalar, sqrt, abs, bignumber, diag, size, reshape, qr, inv, usolve, usolveAll, equal, complex, larger, smaller, matrixFromColumns, dot })

/**
* Compute eigenvalues and eigenvectors of a square matrix.
* Compute eigenvalues and optionally eigenvectors of a square matrix.
* The eigenvalues are sorted by their absolute value, ascending, and
* returned as a vector in the `values` property of the returned project.
* An eigenvalue with algebraic multiplicity k will be listed k times, so
Expand All @@ -31,9 +31,21 @@ export const createEigs = /* #__PURE__ */ factory(name, dependencies, ({ config,
* in that case, however, you may still find useful information
* in `err.values` and `err.vectors`.
*
* Note that the 'precision' option does not directly specify the _accuracy_
* of the returned eigenvalues. Rather, it determines how small an entry
* of the iterative approximations to an upper triangular matrix must be
* in order to be considered zero. The actual accuracy of the returned
* eigenvalues may be greater or less than the precision, depending on the
* conditioning of the matrix and how far apart or close the actual
* eigenvalues are. Note that currently, relatively simple, "traditional"
* methods of eigenvalue computation are being used; this is not a modern,
* high-precision eigenvalue computation. That said, it should typically
* produce fairly reasonable results.
*
* Syntax:
*
* math.eigs(x, [prec])
* math.eigs(x, {options})
*
* Examples:
*
Expand All @@ -47,14 +59,17 @@ export const createEigs = /* #__PURE__ */ factory(name, dependencies, ({ config,
* const UTxHxU = multiply(transpose(U), H, U) // diagonalizes H if possible
* E[0] == UTxHxU[0][0] // returns true always
*
* // Compute only approximate eigenvalues:
* const {values} = eigs(H, {eigenvectors: false, precision: 1e-6})
*
* See also:
*
* inv
*
* @param {Array | Matrix} x Matrix to be diagonalized
*
* @param {number | BigNumber} [prec] Precision, default value: 1e-15
* @return {{values: Array|Matrix, eigenvectors: Array<EVobj>}} Object containing an array of eigenvalues and an array of {value: number|BigNumber, vector: Array|Matrix} objects.
* @param {number | BigNumber | OptsObject} [opts] Object with keys `precision`, defaulting to config.epsilon, and `eigenvectors`, defaulting to true and specifying whether to compute eigenvectors. If just a number, specifies precision.
josdejong marked this conversation as resolved.
Show resolved Hide resolved
* @return {{values: Array|Matrix, eigenvectors?: Array<EVobj>}} Object containing an array of eigenvalues and an array of {value: number|BigNumber, vector: Array|Matrix} objects. The eigenvectors property is undefined if eigenvectors were not requested.
*
*/
return typed('eigs', {
Expand All @@ -67,38 +82,46 @@ export const createEigs = /* #__PURE__ */ factory(name, dependencies, ({ config,
// is a roundabout way of doing type detection.
Array: function (x) { return doEigs(matrix(x)) },
'Array, number|BigNumber': function (x, prec) {
return doEigs(matrix(x), prec)
return doEigs(matrix(x), { precision: prec })
},
'Array, Object' (x, opts) { return doEigs(matrix(x), opts) },
Matrix: function (mat) {
return doEigs(mat, undefined, true)
return doEigs(mat, { matricize: true })
},
'Matrix, number|BigNumber': function (mat, prec) {
return doEigs(mat, prec, true)
return doEigs(mat, { precision: prec, matricize: true })
},
'Matrix, Object': function (mat, opts) {
const useOpts = { matricize: true }
Object.assign(useOpts, opts)
return doEigs(mat, useOpts)
}
})

function doEigs (mat, prec, matricize = false) {
const result = computeValuesAndVectors(mat, prec)
if (matricize) {
function doEigs (mat, opts = {}) {
const computeVectors = 'eigenvectors' in opts ? opts.eigenvectors : true
const prec = opts.precision ?? config.epsilon
const result = computeValuesAndVectors(mat, prec, computeVectors)
if (opts.matricize) {
result.values = matrix(result.values)
result.eigenvectors = result.eigenvectors.map(({ value, vector }) =>
({ value, vector: matrix(vector) }))
}
Object.defineProperty(result, 'vectors', {
enumerable: false, // to make sure that the eigenvectors can still be
// converted to string.
get: () => {
throw new Error('eigs(M).vectors replaced with eigs(M).eigenvectors')
if (computeVectors) {
result.eigenvectors = result.eigenvectors.map(({ value, vector }) =>
({ value, vector: matrix(vector) }))
}
})
}
if (computeVectors) {
Object.defineProperty(result, 'vectors', {
enumerable: false, // to make sure that the eigenvectors can still be
// converted to string.
get: () => {
throw new Error('eigs(M).vectors replaced with eigs(M).eigenvectors')
}
})
}
return result
}

function computeValuesAndVectors (mat, prec) {
if (prec === undefined) {
prec = config.epsilon
}

function computeValuesAndVectors (mat, prec, computeVectors) {
const arr = mat.toArray() // NOTE: arr is guaranteed to be unaliased
// and so safe to modify in place
const asize = mat.size()
Expand All @@ -114,12 +137,12 @@ export const createEigs = /* #__PURE__ */ factory(name, dependencies, ({ config,

if (isSymmetric(arr, N, prec)) {
const type = coerceTypes(mat, arr, N) // modifies arr by side effect
return doRealSymmetric(arr, N, prec, type)
return doRealSymmetric(arr, N, prec, type, computeVectors)
}
}

const type = coerceTypes(mat, arr, N) // modifies arr by side effect
return doComplexEigs(arr, N, prec, type)
return doComplexEigs(arr, N, prec, type, computeVectors)
}

/** @return {boolean} */
Expand Down
26 changes: 10 additions & 16 deletions src/function/matrix/eigs/complexEigs.js
Original file line number Diff line number Diff line change
Expand Up @@ -10,11 +10,7 @@ export function createComplexEigs ({ addScalar, subtract, flatten, multiply, mul
*
* @returns {{ values: number[], vectors: number[][] }}
*/
function complexEigs (arr, N, prec, type, findVectors) {
if (findVectors === undefined) {
findVectors = true
}

function complexEigs (arr, N, prec, type, findVectors = true) {
// TODO check if any row/col are zero except the diagonal

// make sure corresponding rows and columns have similar magnitude
Expand Down Expand Up @@ -46,13 +42,12 @@ export function createComplexEigs ({ addScalar, subtract, flatten, multiply, mul
// (So U = C^-1 arr C and the relationship between current arr
// and original A is unchanged.)

let eigenvectors

if (findVectors) {
eigenvectors = findEigenvectors(arr, N, C, R, values, prec, type)
const eigenvectors = findEigenvectors(arr, N, C, R, values, prec, type)
return { values, eigenvectors }
}

return { values, eigenvectors }
return { values }
}

/**
Expand Down Expand Up @@ -95,9 +90,8 @@ export function createComplexEigs ({ addScalar, subtract, flatten, multiply, mul

for (let j = 0; j < N; j++) {
if (i === j) continue
const c = abs(arr[i][j]) // should be real
colNorm = addScalar(colNorm, c)
rowNorm = addScalar(rowNorm, c)
colNorm = addScalar(colNorm, abs(arr[j][i]))
rowNorm = addScalar(rowNorm, abs(arr[i][j]))
}

if (!equal(colNorm, 0) && !equal(rowNorm, 0)) {
Expand Down Expand Up @@ -136,21 +130,21 @@ export function createComplexEigs ({ addScalar, subtract, flatten, multiply, mul
if (i === j) {
continue
}
arr[i][j] = multiplyScalar(arr[i][j], f)
arr[j][i] = multiplyScalar(arr[j][i], g)
arr[i][j] = multiplyScalar(arr[i][j], g)
arr[j][i] = multiplyScalar(arr[j][i], f)
}

// keep track of transformations
if (findVectors) {
Rdiag[i] = multiplyScalar(Rdiag[i], f)
Rdiag[i] = multiplyScalar(Rdiag[i], g)
}
}
}
}
}

// return the diagonal row transformation matrix
return diag(Rdiag)
return findVectors ? diag(Rdiag) : null
}

/**
Expand Down
65 changes: 38 additions & 27 deletions src/function/matrix/eigs/realSymmetric.js
Original file line number Diff line number Diff line change
Expand Up @@ -7,28 +7,31 @@ export function createRealSymmetric ({ config, addScalar, subtract, abs, atan, c
* @param {number} prec
* @param {'number' | 'BigNumber'} type
*/
function main (arr, N, prec = config.epsilon, type) {
function main (arr, N, prec = config.epsilon, type, computeVectors) {
if (type === 'number') {
return diag(arr, prec)
return diag(arr, prec, computeVectors)
}

if (type === 'BigNumber') {
return diagBig(arr, prec)
return diagBig(arr, prec, computeVectors)
}

throw TypeError('Unsupported data type: ' + type)
}

// diagonalization implementation for number (efficient)
function diag (x, precision) {
function diag (x, precision, computeVectors) {
const N = x.length
const e0 = Math.abs(precision / N)
let psi
let Sij = new Array(N)
// Sij is Identity Matrix
for (let i = 0; i < N; i++) {
Sij[i] = Array(N).fill(0)
Sij[i][i] = 1.0
let Sij
if (computeVectors) {
Sij = new Array(N)
// Sij is Identity Matrix
for (let i = 0; i < N; i++) {
Sij[i] = Array(N).fill(0)
Sij[i][i] = 1.0
}
}
// initial error
let Vab = getAij(x)
Expand All @@ -37,26 +40,29 @@ export function createRealSymmetric ({ config, addScalar, subtract, abs, atan, c
const j = Vab[0][1]
psi = getTheta(x[i][i], x[j][j], x[i][j])
x = x1(x, psi, i, j)
Sij = Sij1(Sij, psi, i, j)
if (computeVectors) Sij = Sij1(Sij, psi, i, j)
Vab = getAij(x)
}
const Ei = Array(N).fill(0) // eigenvalues
for (let i = 0; i < N; i++) {
Ei[i] = x[i][i]
}
return sorting(clone(Ei), clone(Sij))
return sorting(clone(Ei), Sij, computeVectors)
}

// diagonalization implementation for bigNumber
function diagBig (x, precision) {
function diagBig (x, precision, computeVectors) {
const N = x.length
const e0 = abs(precision / N)
let psi
let Sij = new Array(N)
// Sij is Identity Matrix
for (let i = 0; i < N; i++) {
Sij[i] = Array(N).fill(0)
Sij[i][i] = 1.0
let Sij
if (computeVectors) {
Sij = new Array(N)
// Sij is Identity Matrix
for (let i = 0; i < N; i++) {
Sij[i] = Array(N).fill(0)
Sij[i][i] = 1.0
}
}
// initial error
let Vab = getAijBig(x)
Expand All @@ -65,15 +71,15 @@ export function createRealSymmetric ({ config, addScalar, subtract, abs, atan, c
const j = Vab[0][1]
psi = getThetaBig(x[i][i], x[j][j], x[i][j])
x = x1Big(x, psi, i, j)
Sij = Sij1Big(Sij, psi, i, j)
if (computeVectors) Sij = Sij1Big(Sij, psi, i, j)
Vab = getAijBig(x)
}
const Ei = Array(N).fill(0) // eigenvalues
for (let i = 0; i < N; i++) {
Ei[i] = x[i][i]
}
// return [clone(Ei), clone(Sij)]
return sorting(clone(Ei), clone(Sij))
return sorting(clone(Ei), Sij, computeVectors)
}

// get angle
Expand Down Expand Up @@ -234,13 +240,15 @@ export function createRealSymmetric ({ config, addScalar, subtract, abs, atan, c
}

// sort results
function sorting (E, S) {
function sorting (E, S, computeVectors) {
const N = E.length
const values = Array(N)
const vecs = Array(N)

for (let k = 0; k < N; k++) {
vecs[k] = Array(N)
let vecs
if (computeVectors) {
vecs = Array(N)
for (let k = 0; k < N; k++) {
vecs[k] = Array(N)
}
}
for (let i = 0; i < N; i++) {
let minID = 0
Expand All @@ -252,11 +260,14 @@ export function createRealSymmetric ({ config, addScalar, subtract, abs, atan, c
}
}
values[i] = E.splice(minID, 1)[0]
for (let k = 0; k < N; k++) {
vecs[i][k] = S[k][minID]
S[k].splice(minID, 1)
if (computeVectors) {
for (let k = 0; k < N; k++) {
vecs[i][k] = S[k][minID]
S[k].splice(minID, 1)
}
}
}
if (!computeVectors) return { values }
const eigenvectors = vecs.map((vector, i) => ({ value: values[i], vector }))
return { values, eigenvectors }
}
Expand Down
7 changes: 7 additions & 0 deletions test/typescript-tests/testTypes.ts
Original file line number Diff line number Diff line change
Expand Up @@ -1291,6 +1291,13 @@ Matrices examples
const eig = math.eigs(D)
assert.ok(math.deepEqual(eig.values, [1, 1]))
assert.deepStrictEqual(eig.eigenvectors, [{ value: 1, vector: [1, 0] }])
const eigvv = math.eigs(D, { precision: 1e-6 })
assert.ok(math.deepEqual(eigvv.values, [1, 1]))
assert.deepStrictEqual(eigvv.eigenvectors, [{ value: 1, vector: [1, 0] }])
const eigv = math.eigs(D, { eigenvectors: false })
assert.ok(math.deepEqual(eigv.values, [1, 1]))
//@ts-expect-error ...verify that eigenvectors not expected to be there
eigv.eigenvectors
}

// Fourier transform and inverse
Expand Down
Loading