Skip to content

jobstdavid/mixnhreg

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Mixtures of Non-Homogeneous Linear Regression Models

CRAN status R-CMD-check version

Overview

The R package mixnhreg allows to estimate mixtures of non-homogenous linear regression models. Linear predictors are separately employed for the location, scale and weight parameter of each mixture component allowing for heteroscedastic mixture regression models.

The infrastructure offers:

  • predefined mixture distributions, such as e.g. mixture normal distribution.
  • the possibility for the user to extending the zoo of usable mixture distributions by its own.

The model estimation supports:

  • numerical optimization algorithms such as e.g. BFGS or Nelder-Mead.
  • non-cyclic gradient boosting and therefore a variable selection procedure.
  • different loss functions for the model estimation, i.e. negative log-likelihood or continuous ranked probability score.

Installation

You can install the development version from GitHub with:

# install.packages("remotes")
remotes::install_github("jobstdavid/mixnhreg")

Example

Model estimation

library(mixnhreg)

# load data
data("station")

# fit mixture normal distribution with two components via BFGS
(fit_optim <- mixnhreg(formula = obs ~ sin1 + cos1 + temp_mean | temp_ctrl,
                       scale.formula = ~ sin1 + cos1 + log(temp_sd) | 1,
                       weight.formula = ~ sin1 + cos1 | 1,
                       data = station,
                       control = control_optim()))
#> Family: Mixture Normal Distribution with 2 components
#> CRPS: 1654.3006, logLik: -3353.8597, AIC: 6737.7195, BIC: 6820.3266

# fit mixture normal distribution with two components via gradient-boosting
(fit_boost <- mixnhreg(formula = obs ~ sin1 + cos1 + temp_mean | temp_ctrl,
                       scale.formula = ~ sin1 + cos1 + log(temp_sd) | 1,
                       weight.formula = ~ sin1 + cos1 | 1,
                       data = station,
                       control = control_boost(mstop = "cv")))
#> Family: Mixture Normal Distribution with 2 components
#> CRPS: 1707.8399, logLik: -3405.8353, AIC: 6837.6705, BIC: 6909.2634 
#> Boosting iterations: 5998, stopping criterion: cv

Model prediction

# parameter predictions
par_optim <- predict(fit_optim, type = "parameter")
par_boost <- predict(fit_boost, type = "parameter")

# get observations and mean forecasts
obs <- na.omit(station$obs)
mean_optim <- rowSums(par_optim$location * par_optim$weight)
mean_boost <- rowSums(par_boost$location * par_boost$weight)

Residual plot

plot(obs - mean_optim, 
     xlab = "Index", 
     ylab = "Observation - Mean", 
     pch = 19, 
     col = adjustcolor("red", alpha = 0.5))
points(obs - mean_boost, 
       pch = 19, 
       col = adjustcolor("steelblue", alpha = 0.25))
legend("bottomright", 
       legend = c("optim", "boost"),
       pch = 19,
       col = c("red", "steelblue"))
grid()

Contact

Feel free to contact [email protected] if you have any questions or suggestions.

References

  • Grimit E.P., Gneiting T., Berrocal V., Johnson N.A. (2006). The continuous ranked probability score for circular variables and its application to mesoscale forecast ensemble verification. Quarterly Journal of the Royal Meteorological Society, 132, pp. 2925–2942. doi: https://doi.org/10.1256/qj.05.235.
  • Hepp, T., J. Zierk, and E. Bergherr (2023). “Component-wise boosting for mixture distributional regression models”. In: Proceedings of the 37th International Workshop on Statistical Modelling. url: https://iwsm2023.statistik.tu-dortmund.de/.
  • Jobst, D. (2024). Gradient-Boosted Mixture Regression Models for Postprocessing Ensemble Weather Forecasts. doi: https://doi.org/10.48550/arXiv.2412.09583.
  • Messner, J. W., G. J. Mayr, and A. Zeileis (2017). “Nonhomogeneous Boosting for Predictor Selection in Ensemble Postprocessing”. In: Monthly Weather Review 145.1, pp. 137–147. doi: https://doi.org/10.1175/mwr-d-16-0088.1.
  • Thomas, J. et al. (2017). “Gradient boosting for distributional regression: faster tuning and improved variable selection via noncyclical updates”. In: Statistics and Computing 28.3, pp. 673–687. doi: https://doi.org/10.1007/s11222-017-9754-6.

About

Mixtures of Non-Homogenous Linear Regression Models

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published