-
Notifications
You must be signed in to change notification settings - Fork 90
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' of https://www.github.com/jiazhihao/taso
- Loading branch information
Showing
1 changed file
with
142 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,142 @@ | ||
import taso | ||
|
||
def get_pads(kernel, padding): | ||
if sum(padding) == 0 and sum(kernel) > 2: | ||
pads = "VALID" | ||
else: | ||
pads = "SAME" | ||
return pads | ||
|
||
def conv2d(graph, v, out_channels, kernel=(1, 1), stride=(1, 1), padding=(0, 0)): | ||
w = graph.new_weight(dims=(out_channels, v.dim(1), *kernel)) | ||
v = graph.conv2d(input=v, weight=w, strides=stride, padding=get_pads(kernel, padding), activation="RELU") | ||
return v | ||
|
||
def pool2d(graph, v, pool_type, kernel=(1, 1), stride=(1, 1), padding=(0, 0)): | ||
if pool_type == 'global_avg': | ||
pads = "VALID" | ||
x = graph.avgpool2d(input=v, kernels=kernel, strides=[1, 1], padding=pads) | ||
elif pool_type == 'avg': | ||
pads = get_pads(kernel, padding) | ||
x = graph.avgpool2d(input=v, kernels=kernel, strides=stride, padding=pads) | ||
elif pool_type == 'max': | ||
pads = get_pads(kernel, padding) | ||
x = graph.maxpool2d(input=v, kernels=kernel, strides=stride, padding=pads) | ||
else: | ||
raise NotImplemented | ||
return x | ||
|
||
|
||
def inception_front(graph, v): # 3 x 299 x 299 | ||
v = conv2d(graph, v, out_channels=32, kernel=(3, 3), stride=(2, 2)) # 32 x 149 x 149 | ||
v = conv2d(graph, v, out_channels=32, kernel=(3, 3)) # 32 x 147 x 147 | ||
v = conv2d(graph, v, out_channels=64, kernel=(3, 3), padding=(1, 1)) # 64 x 147 x 147 | ||
v = pool2d(graph, v, pool_type='max', kernel=(3, 3), stride=(2, 2)) # 64 x 73 x 73 | ||
v = conv2d(graph, v, 80, kernel=(1, 1)) # 80 x 73 x 73 | ||
v = conv2d(graph, v, out_channels=192, kernel=(3, 3)) # 192 x 71 x 71 | ||
v = pool2d(graph, v, pool_type='max', kernel=(3, 3), stride=(2, 2)) # 192 x 35 x 35 | ||
return v | ||
|
||
|
||
def inception_a(graph, v, pool_features): | ||
v1x1 = conv2d(graph, v, out_channels=64, kernel=(1, 1)) | ||
|
||
v5x5 = conv2d(graph, v, out_channels=48, kernel=(1, 1)) | ||
v5x5 = conv2d(graph, v5x5, out_channels=64, kernel=(5, 5), padding=(2, 2)) | ||
|
||
v3x3dbl = conv2d(graph, v, out_channels=64, kernel=(1, 1)) | ||
v3x3dbl = conv2d(graph, v3x3dbl, out_channels=96, kernel=(3, 3), padding=(1, 1)) | ||
v3x3dbl = conv2d(graph, v3x3dbl, out_channels=96, kernel=(3, 3), padding=(1, 1)) | ||
|
||
v_pool = pool2d(graph, v, pool_type='avg', kernel=(3, 3), stride=(1, 1), padding=(1, 1)) | ||
v_pool = conv2d(graph, v_pool, out_channels=pool_features, kernel=(1, 1)) | ||
return graph.concat(1, [v1x1, v5x5, v3x3dbl, v_pool]) | ||
|
||
|
||
def inception_b(graph, v): | ||
v3x3 = conv2d(graph, v, out_channels=384, kernel=(3, 3), stride=(2, 2)) | ||
|
||
v3x3dbl = conv2d(graph, v, out_channels=64, kernel=(1, 1)) | ||
v3x3dbl = conv2d(graph, v3x3dbl, out_channels=96, kernel=(3, 3), padding=(1, 1)) | ||
v3x3dbl = conv2d(graph, v3x3dbl, out_channels=96, kernel=(3, 3), stride=(2, 2)) | ||
|
||
v_pool = pool2d(graph, v, pool_type='max', kernel=(3, 3), stride=(2, 2)) | ||
return graph.concat(1, [v3x3, v3x3dbl, v_pool]); | ||
|
||
|
||
def inception_c(graph, v, channels_7x7): | ||
v1x1 = conv2d(graph, v, out_channels=192, kernel=(1, 1)) | ||
|
||
c7 = channels_7x7 | ||
v7x7 = conv2d(graph, v, out_channels=c7, kernel=(1, 1)) | ||
v7x7 = conv2d(graph, v7x7, out_channels=c7, kernel=(1, 7), padding=(0, 3)) | ||
v7x7 = conv2d(graph, v7x7, out_channels=192, kernel=(7, 1), padding=(3, 0)) | ||
|
||
v7x7dbl = conv2d(graph, v, out_channels=c7, kernel=(1, 1)) | ||
v7x7dbl = conv2d(graph, v7x7dbl, out_channels=c7, kernel=(7, 1), padding=(3, 0)) | ||
v7x7dbl = conv2d(graph, v7x7dbl, out_channels=c7, kernel=(1, 7), padding=(0, 3)) | ||
v7x7dbl = conv2d(graph, v7x7dbl, out_channels=c7, kernel=(7, 1), padding=(3, 0)) | ||
v7x7dbl = conv2d(graph, v7x7dbl, out_channels=192, kernel=(1, 7), padding=(0, 3)) | ||
|
||
v_pool = pool2d(graph, v, pool_type='avg', kernel=(3, 3), stride=(1, 1), padding=(1, 1)) | ||
v_pool = conv2d(graph, v_pool, out_channels=192, kernel=(1, 1)) | ||
return graph.concat(1, [v1x1, v7x7, v7x7dbl, v_pool]) | ||
|
||
|
||
def inception_d(graph, v): | ||
v3x3 = conv2d(graph, v, out_channels=192, kernel=(1, 1)) | ||
v3x3 = conv2d(graph, v3x3, out_channels=320, kernel=(3, 3), stride=(2, 2)) | ||
|
||
v7x7x3 = conv2d(graph, v, out_channels=192, kernel=(1, 1)) | ||
v7x7x3 = conv2d(graph, v7x7x3, out_channels=192, kernel=(1, 7), padding=(0, 3)) | ||
v7x7x3 = conv2d(graph, v7x7x3, out_channels=192, kernel=(7, 1), padding=(3, 0)) | ||
v7x7x3 = conv2d(graph, v7x7x3, out_channels=192, kernel=(3, 3), stride=(2, 2)) | ||
|
||
v_pool = pool2d(graph, v, pool_type='max', kernel=(3, 3), stride=(2, 2)) | ||
return graph.concat(1, [v3x3, v7x7x3, v_pool]) | ||
|
||
|
||
def inception_e(graph, v): | ||
v1x1 = conv2d(graph, v, out_channels=320, kernel=(1, 1)) | ||
|
||
v3x3 = conv2d(graph, v, out_channels=384, kernel=(1, 1)) | ||
v3x3a = conv2d(graph, v3x3, out_channels=384, kernel=(1, 3), padding=(0, 1)) | ||
v3x3b = conv2d(graph, v3x3, out_channels=384, kernel=(3, 1), padding=(1, 0)) | ||
|
||
v3x3dbl = conv2d(graph, v, out_channels=448, kernel=(1, 1)) | ||
v3x3dbl = conv2d(graph, v3x3dbl, out_channels=384, kernel=(3, 3), padding=(1, 1)) | ||
v3x3dbla = conv2d(graph, v3x3dbl, out_channels=384, kernel=(1, 3), padding=(0, 1)) | ||
v3x3dblb = conv2d(graph, v3x3dbl, out_channels=384, kernel=(3, 1), padding=(1, 0)) | ||
|
||
v_pool = pool2d(graph, v, pool_type='avg', kernel=(3, 3), stride=(1, 1), padding=(1, 1)) | ||
v_pool = conv2d(graph, v_pool, out_channels=192, kernel=(1, 1)) | ||
return graph.concat(1, [v1x1, v3x3a, v3x3b, v3x3dbla, v3x3dblb, v_pool]) | ||
|
||
|
||
def inception_logits(graph, v): | ||
return pool2d(graph, v, pool_type='global_avg') | ||
|
||
|
||
def inception_v3(batch_size=1): | ||
graph = taso.new_graph() | ||
v = graph.new_input(dims=(batch_size, 3, 299, 299)) | ||
v = inception_front(graph, v) | ||
v = inception_a(graph, v, 32) | ||
v = inception_a(graph, v, 64) | ||
v = inception_a(graph, v, 64) | ||
v = inception_b(graph, v) | ||
v = inception_c(graph, v, 128) | ||
v = inception_c(graph, v, 160) | ||
v = inception_c(graph, v, 160) | ||
v = inception_c(graph, v, 192) | ||
v = inception_d(graph, v) | ||
v = inception_e(graph, v) | ||
v = inception_e(graph, v) | ||
v = inception_logits(graph, v) | ||
return graph | ||
|
||
graph = inception_v3(batch_size=32) # change batch_size from 4 to 8 would cause error. | ||
opt_graph = taso.optimize(graph, alpha=1.0, budget=30) | ||
|
||
print(graph.run_time()) | ||
print(opt_graph.run_time()) |