Version: 1.0
Estimation of statistical power and sample size in metabolic phenotyping.
Statistical power analysis tool
This is a Python tool to help you design your experiment in order to gain your expected power with combination of effect and sample size for multivariate data sets.
This tool can only run in Python 2.x.
- Statistical Power Analysis
- Experiment Design
- Statistical Power Analysis
- Random Permutation
- False Discovery Rate (by Benjamini & Hochberg)
- Metabolomics / Targeted
- ALL
- Goncalo Correia (Imperial College London)
- Jianliang Gao (Imperial College London)
- Jianliang Gao (Imperial College London)
For local individual installation:
docker pull docker-registry.phenomenal-h2020.eu/phnmnl/papy:latest
For direct docker usage:
docker run --rm -t -v <path/to/data/dir>:/data docker-registry.phenomenal-h2020.eu/phnmnl/papy /data/<testdata_input>.csv <exp_cols_from_input_data> <sample_size> <effect_size> <number of repeats> <outcome_type> <CPU number>
Please check the docs for detail at https://jianlianggao.github.io/papy/pa.html
- Benjamin, J. Blaise, Goncalo Correia, et al., Power Analysis and Sample Size Determination in Metabolic Phenotyping. Bioinformatics, 2016. 88(10): p. 5179-5188. DOI: 10.1021/acs.analchem.6b00188