Skip to content

jianlianggao/papy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

82 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Logo

Statistical Power Analysis tool

Version: 1.0

Short Description

Estimation of statistical power and sample size in metabolic phenotyping.

Description

Statistical power analysis tool

This is a Python tool to help you design your experiment in order to gain your expected power with combination of effect and sample size for multivariate data sets.

This tool can only run in Python 2.x.

Key features

  • Statistical Power Analysis
  • Experiment Design

Functionality

  • Statistical Power Analysis
  • Random Permutation
  • False Discovery Rate (by Benjamini & Hochberg)

Approaches

  • Metabolomics / Targeted

Instrument Data Types

  • ALL

Screenshots

Tool Authors

  • Goncalo Correia (Imperial College London)
  • Jianliang Gao (Imperial College London)

Container Contributors

Website

Git Repository

Installation

For local individual installation:

docker pull docker-registry.phenomenal-h2020.eu/phnmnl/papy:latest

Usage Instructions

For direct docker usage:

docker run --rm -t -v <path/to/data/dir>:/data docker-registry.phenomenal-h2020.eu/phnmnl/papy /data/<testdata_input>.csv <exp_cols_from_input_data> <sample_size> <effect_size> <number of repeats> <outcome_type> <CPU number>

Help and Documentation

Please check the docs for detail at https://jianlianggao.github.io/papy/pa.html

Publications

  • Benjamin, J. Blaise, Goncalo Correia, et al., Power Analysis and Sample Size Determination in Metabolic Phenotyping. Bioinformatics, 2016. 88(10): p. 5179-5188. DOI: 10.1021/acs.analchem.6b00188

About

Statistical power analysis tool

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages