-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'develop' of https://github.com/ispras/GNN-AID into fix_…
…split
- Loading branch information
Showing
10 changed files
with
868 additions
and
24 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
import random | ||
import warnings | ||
|
||
import torch | ||
|
||
from aux.custom_decorators import timing_decorator | ||
from aux.utils import EXPLAINERS_LOCAL_RUN_PARAMETERS_PATH, EXPLAINERS_INIT_PARAMETERS_PATH | ||
from explainers.explainers_manager import FrameworkExplainersManager | ||
from models_builder.gnn_models import FrameworkGNNModelManager, Metric | ||
from src.aux.configs import ModelModificationConfig, ConfigPattern | ||
from src.base.datasets_processing import DatasetManager | ||
from src.models_builder.models_zoo import model_configs_zoo | ||
|
||
|
||
@timing_decorator | ||
def run_interpretation_test(): | ||
full_name = ("single-graph", "Planetoid", 'Cora') | ||
steps_epochs = 10 | ||
save_model_flag = False | ||
my_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | ||
|
||
dataset, data, results_dataset_path = DatasetManager.get_by_full_name( | ||
full_name=full_name, | ||
dataset_ver_ind=0 | ||
) | ||
gnn = model_configs_zoo(dataset=dataset, model_name='gcn_gcn') | ||
manager_config = ConfigPattern( | ||
_config_class="ModelManagerConfig", | ||
_config_kwargs={ | ||
"mask_features": [], | ||
"optimizer": { | ||
# "_config_class": "Config", | ||
"_class_name": "Adam", | ||
# "_import_path": OPTIMIZERS_PARAMETERS_PATH, | ||
# "_class_import_info": ["torch.optim"], | ||
"_config_kwargs": {}, | ||
} | ||
} | ||
) | ||
gnn_model_manager = FrameworkGNNModelManager( | ||
gnn=gnn, | ||
dataset_path=results_dataset_path, | ||
manager_config=manager_config, | ||
modification=ModelModificationConfig(model_ver_ind=0, epochs=steps_epochs) | ||
) | ||
gnn_model_manager.gnn.to(my_device) | ||
data.x = data.x.float() | ||
data = data.to(my_device) | ||
|
||
warnings.warn("Start training") | ||
try: | ||
raise FileNotFoundError() | ||
except FileNotFoundError: | ||
gnn_model_manager.epochs = gnn_model_manager.modification.epochs = 0 | ||
train_test_split_path = gnn_model_manager.train_model(gen_dataset=dataset, steps=steps_epochs, | ||
save_model_flag=save_model_flag, | ||
metrics=[Metric("F1", mask='train', average=None)]) | ||
|
||
if train_test_split_path is not None: | ||
dataset.save_train_test_mask(train_test_split_path) | ||
train_mask, val_mask, test_mask, train_test_sizes = torch.load(train_test_split_path / 'train_test_split')[ | ||
:] | ||
dataset.train_mask, dataset.val_mask, dataset.test_mask = train_mask, val_mask, test_mask | ||
data.percent_train_class, data.percent_test_class = train_test_sizes | ||
warnings.warn("Training was successful") | ||
|
||
metric_loc = gnn_model_manager.evaluate_model( | ||
gen_dataset=dataset, metrics=[Metric("F1", mask='test', average='macro')]) | ||
print(metric_loc) | ||
|
||
explainer_init_config = ConfigPattern( | ||
_class_name="GNNExplainer(torch-geom)", | ||
_import_path=EXPLAINERS_INIT_PARAMETERS_PATH, | ||
_config_class="ExplainerInitConfig", | ||
_config_kwargs={ | ||
"epochs": 10 | ||
} | ||
) | ||
explainer_metrics_run_config = ConfigPattern( | ||
_config_class="ExplainerRunConfig", | ||
_config_kwargs={ | ||
"mode": "local", | ||
"kwargs": { | ||
"_class_name": "GNNExplainer(torch-geom)", | ||
"_import_path": EXPLAINERS_LOCAL_RUN_PARAMETERS_PATH, | ||
"_config_class": "Config", | ||
"_config_kwargs": { | ||
"stability_graph_perturbations_nums": 10, | ||
"stability_feature_change_percent": 0.05, | ||
"stability_node_removal_percent": 0.05, | ||
"consistency_num_explanation_runs": 10 | ||
}, | ||
} | ||
} | ||
) | ||
|
||
explainer_GNNExpl = FrameworkExplainersManager( | ||
init_config=explainer_init_config, | ||
dataset=dataset, gnn_manager=gnn_model_manager, | ||
explainer_name='GNNExplainer(torch-geom)', | ||
) | ||
|
||
num_explaining_nodes = 10 | ||
node_indices = random.sample(range(dataset.data.x.shape[0]), num_explaining_nodes) | ||
|
||
# explainer_GNNExpl.explainer.pbar = ProgressBar(socket, "er", desc=f'{explainer_GNNExpl.explainer.name} explaining') | ||
# explanation_metric = NodesExplainerMetric( | ||
# model=explainer_GNNExpl.gnn, | ||
# graph=explainer_GNNExpl.gen_dataset.data, | ||
# explainer=explainer_GNNExpl.explainer | ||
# ) | ||
# res = explanation_metric.evaluate(node_indices) | ||
explanation_metrics = explainer_GNNExpl.evaluate_metrics(node_indices, explainer_metrics_run_config) | ||
print(explanation_metrics) | ||
|
||
|
||
if __name__ == '__main__': | ||
random.seed(11) | ||
run_interpretation_test() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.