-
Notifications
You must be signed in to change notification settings - Fork 3
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #21 from ispras/Q-attack
Q attack
- Loading branch information
Showing
5 changed files
with
415 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,239 @@ | ||
import copy | ||
import math | ||
import numpy as np | ||
import random | ||
|
||
from tqdm import tqdm | ||
from attacks.evasion_attacks import EvasionAttacker | ||
from attacks.QAttack.utils import get_adj_list, from_adj_list, adj_list_oriented_to_non_oriented | ||
|
||
class QAttacker(EvasionAttacker): | ||
name = "QAttack" | ||
|
||
def __init__(self, population_size, individual_size, generations, prob_cross, prob_mutate, **kwargs): | ||
super().__init__(**kwargs) | ||
self.population_size = population_size | ||
self.individual_size = individual_size | ||
self.generations = generations | ||
self.prob_cross = prob_cross | ||
self.prob_mutate = prob_mutate | ||
|
||
def init(self, gen_dataset): | ||
""" | ||
Init first population: | ||
gen_dataset - graph-dataset | ||
population_size - size of population | ||
individual_size - amount of rewiring actions in one gene/individual | ||
""" | ||
self.population = [] | ||
|
||
self.adj_list = get_adj_list(gen_dataset) | ||
|
||
for i in tqdm(range(self.population_size), desc='Init first population:'): | ||
non_isolated_nodes = set(gen_dataset.dataset.edge_index[0].tolist()).union( | ||
set(gen_dataset.dataset.edge_index[1].tolist())) | ||
selected_nodes = np.random.choice(list(self.adj_list.keys()), size=self.individual_size, replace=False) | ||
gene = {} | ||
for n in selected_nodes: | ||
connected_nodes = set(self.adj_list[n]) | ||
connected_nodes.add(n) | ||
addition_nodes = non_isolated_nodes.difference(connected_nodes) | ||
gene[n] = {'add': np.random.choice(list(addition_nodes), size=1), | ||
'del': np.random.choice(list(self.adj_list[n]), size=1)} | ||
self.population.append(gene) | ||
|
||
def fitness(self, model, gen_dataset): | ||
""" | ||
Calculate fitness function with node classification | ||
""" | ||
|
||
fit_scores = [] | ||
for i in range(self.population_size): | ||
# Get rewired dataset | ||
dataset = copy.deepcopy(gen_dataset.dataset) | ||
rewiring = self.population[i] | ||
adj_list = get_adj_list(dataset) | ||
for n in rewiring.keys(): | ||
adj_list[n] = list(set(adj_list[n]).union({int(rewiring[n]['add'])}).difference({int(rewiring[n]['del'])})) | ||
dataset.edge_index = from_adj_list(adj_list) | ||
|
||
# Get labels from black-box | ||
labels = model.gnn.get_answer(dataset.x, dataset.edge_index) | ||
labeled_nodes = {n: labels.tolist()[n-1] for n in adj_list.keys()} # FIXME check order for labels and node id consistency | ||
|
||
# Calculate modularity | ||
Q = self.modularity(adj_list, labeled_nodes) | ||
fit_scores.append(1 / math.exp(Q)) | ||
return fit_scores | ||
|
||
def fitness_individual(self, model, gen_dataset, gene): | ||
dataset = copy.deepcopy(gen_dataset.dataset) | ||
rewiring = gene | ||
adj_list = get_adj_list(dataset) | ||
for n in rewiring.keys(): | ||
adj_list[n] = list(set(adj_list[n]).union(set(rewiring[n]['add'])).difference(set(rewiring[n]['del']))) | ||
dataset.edge_index = from_adj_list(adj_list) | ||
|
||
# Get labels from black-box | ||
labels = model.gnn.get_answer(dataset.x, dataset.edge_index) | ||
labeled_nodes = {n: labels.tolist()[n-1] for n in adj_list.keys()} # FIXME check order for labels and node id consistency | ||
|
||
# Calculate modularity | ||
Q = self.modularity(adj_list, labeled_nodes) | ||
return 1 / math.exp(Q) | ||
|
||
@staticmethod | ||
def modularity(adj_list, labeled_nodes): | ||
""" | ||
Calculation of graph modularity with specified node partition on communities | ||
""" | ||
# TODO implement oriented-modularity | ||
|
||
inc = dict([]) | ||
deg = dict([]) | ||
|
||
links = 0 | ||
non_oriented_adj_list = adj_list_oriented_to_non_oriented(adj_list) | ||
for k, v in non_oriented_adj_list.items(): | ||
links += len(v) | ||
if links == 0: | ||
raise ValueError("A graph without link has an undefined modularity") | ||
links //= 2 | ||
|
||
for node, edges in non_oriented_adj_list.items(): | ||
com = labeled_nodes[node] | ||
deg[com] = deg.get(com, 0.) + len(non_oriented_adj_list[node]) | ||
for neighbor in edges: | ||
edge_weight = 1 # TODO weighted graph to be implemented | ||
if labeled_nodes[neighbor] == com: | ||
if neighbor == node: | ||
inc[com] = inc.get(com, 0.) + float(edge_weight) | ||
else: | ||
inc[com] = inc.get(com, 0.) + float(edge_weight) / 2. | ||
|
||
res = 0. | ||
for com in set(labeled_nodes.values()): | ||
res += (inc.get(com, 0.) / links) - \ | ||
(deg.get(com, 0.) / (2. * links)) ** 2 | ||
return res | ||
|
||
def selection(self, model_manager, gen_dataset): | ||
fit_scores = self.fitness(model_manager, gen_dataset) | ||
probs = [i / sum(fit_scores) for i in fit_scores] | ||
selected_population = copy.deepcopy(self.population) | ||
for i in range(self.population_size): | ||
selected_population[i] = copy.deepcopy(self.population[np.random.choice( | ||
self.population_size, 1, False, probs)[0]]) | ||
self.population = selected_population | ||
|
||
def crossover(self): | ||
for i in range(0, self.population_size // 2, 2): | ||
parent_1 = self.population[i] | ||
parent_2 = self.population[i + 1] | ||
crossover_prob = np.random.random() | ||
if crossover_prob <= self.prob_cross: | ||
self.population[i * 2], self.population[i * 2 + 1] = self.gene_crossover(parent_1, parent_2) | ||
else: | ||
self.population[i * 2], self.population[i * 2 + 1] = (copy.deepcopy(self.population[i * 2]), | ||
copy.deepcopy(self.population[i * 2 + 1])) | ||
|
||
def gene_crossover(self, parent_1, parent_2): | ||
parent_1_set = set(parent_1.keys()) | ||
parent_2_set = set(parent_2.keys()) | ||
|
||
parent_1_unique = parent_1_set.difference(parent_2_set) | ||
parent_2_unique = parent_2_set.difference(parent_1_set) | ||
|
||
parent_1_cross = list(parent_1_unique) | ||
parent_2_cross = list(parent_2_unique) | ||
|
||
assert len(parent_1_cross) == len(parent_2_cross) | ||
if len(parent_1_cross) == 0: | ||
return parent_1, parent_2 | ||
n = np.random.randint(1, len(parent_1_cross) + 1) | ||
parent_1_cross = random.sample(parent_1_cross, n) | ||
parent_2_cross = random.sample(parent_2_cross, n) | ||
|
||
parent_1_set.difference_update(parent_1_cross) | ||
parent_2_set.difference_update(parent_2_cross) | ||
|
||
parent_1_set.update(parent_2_cross) | ||
parent_2_set.update(parent_1_cross) | ||
|
||
child_1 = {} | ||
child_2 = {} | ||
for n in parent_1_set: | ||
if n in parent_1.keys(): | ||
child_1[n] = parent_1[n] | ||
else: | ||
child_1[n] = parent_2[n] | ||
for n in parent_2_set: | ||
if n in parent_2.keys(): | ||
child_2[n] = parent_2[n] | ||
else: | ||
child_2[n] = parent_1[n] | ||
|
||
return child_1,child_2 | ||
|
||
def mutation(self, gen_dataset): | ||
for i in range(self.population_size): | ||
keys = self.population[i].keys() | ||
for n in list(keys): | ||
mutation_prob = np.random.random() | ||
if mutation_prob <= self.prob_mutate: | ||
mut_type = np.random.randint(3) | ||
dataset = copy.deepcopy(gen_dataset.dataset) | ||
rewiring = self.population[i] | ||
adj_list = get_adj_list(dataset) | ||
for n in rewiring.keys(): | ||
adj_list[n] = list( | ||
set(adj_list[n]).union(set([int(rewiring[n]['add'])])).difference(set([int(rewiring[n]['del'])]))) | ||
dataset.edge_index = from_adj_list(adj_list) | ||
non_isolated_nodes = set(gen_dataset.dataset.edge_index[0].tolist()).union( | ||
set(gen_dataset.dataset.edge_index[1].tolist())) | ||
if mut_type == 0: | ||
# add mutation | ||
connected_nodes = set(self.adj_list[n]) | ||
connected_nodes.add(n) | ||
addition_nodes = non_isolated_nodes.difference(connected_nodes) | ||
self.population[i][n]['add'] = np.random.choice(list(addition_nodes), 1) | ||
elif mut_type == 1: | ||
# del mutation | ||
self.population[i][n]['del'] = np.random.choice(list(adj_list[n]), 1) | ||
else: | ||
selected_nodes = set(self.population[i].keys()) | ||
non_selected_nodes = non_isolated_nodes.difference(selected_nodes) | ||
new_node = np.random.choice(list(non_selected_nodes), size=1, replace=False)[0] | ||
self.population[i].pop(n) | ||
addition_nodes = non_isolated_nodes.difference(set(self.adj_list[new_node])) | ||
self.population[i][new_node] = {} | ||
self.population[i][new_node]['add'] = np.random.choice(list(addition_nodes), 1) | ||
self.population[i][new_node]['del'] = np.random.choice(list(adj_list[new_node]), 1) | ||
|
||
def elitism(self, model, gen_dataset): | ||
fit_scores = list(enumerate(self.fitness(model, gen_dataset))) | ||
fit_scores = sorted(fit_scores, key=lambda x: x[1]) | ||
sort_order = [x[0] for x in fit_scores] | ||
self.population = [self.population[i] for i in sort_order] | ||
elitism_size = int(0.1 * self.population_size) | ||
self.population[:elitism_size] = self.population[-elitism_size:] | ||
return self.population[-1] | ||
|
||
|
||
def attack(self, model_manager, gen_dataset, mask_tensor): | ||
self.init(gen_dataset) | ||
|
||
for i in tqdm(range(self.generations), desc='Attack iterations:', position=0, leave=True): | ||
self.selection(model_manager, gen_dataset) | ||
self.crossover() | ||
self.mutation(gen_dataset) | ||
best_offspring = self.elitism(model_manager, gen_dataset) | ||
|
||
rewiring = best_offspring | ||
adj_list = get_adj_list(gen_dataset) | ||
for n in rewiring.keys(): | ||
adj_list[n] = list( | ||
set(adj_list[n]).union(set([int(rewiring[n]['add'])])).difference(set([int(rewiring[n]['del'])]))) | ||
|
||
gen_dataset.dataset.data.edge_index = from_adj_list(adj_list) | ||
return gen_dataset |
Oops, something went wrong.