Skip to content

Analysis and benchmarking of mass spectra similarity measures using gnps data set.

License

Notifications You must be signed in to change notification settings

iomega/spec2vec_gnps_data_analysis

Repository files navigation

GitHub GitHub Workflow Status

spec2vec_gnps_data_analysis

Analysis and benchmarking of mass spectra similarity measures using gnps data set.

If you use spec2vec for your research, please cite the following references:

F Huber, L Ridder, S Verhoeven, JH Spaaks, F Diblen, S Rogers, JJJ van der Hooft, "Spec2Vec: Improved mass spectral similarity scoring through learning of structural relationships", bioRxiv, https://doi.org/10.1101/2020.08.11.245928

(and if you use matchms as well: F. Huber, S. Verhoeven, C. Meijer, H. Spreeuw, E. M. Villanueva Castilla, C. Geng, J.J.J. van der Hooft, S. Rogers, A. Belloum, F. Diblen, J.H. Spaaks, (2020). matchms - processing and similarity evaluation of mass spectrometry data. Journal of Open Source Software, 5(52), 2411, https://doi.org/10.21105/joss.02411 )

Thanks!

Tutorial on matchms and Spec2Vec

Possibly the easiest way to learn how to run Spec2Vec is to follow our tutorial on matchms and Spec2Vec.

Create environment

Current spec2vec works with Python 3.7 or 3.8, it might also work with earlier versions but we haven't tested.

conda create --name spec2vec_analysis python=3.7  # or 3.8 if you prefer
conda activate spec2vec_analysis
conda install --channel nlesc --channel bioconda --channel conda-forge spec2vec
pip install jupyter

Clone this repository and run notebooks

git clone https://github.com/iomega/spec2vec_gnps_data_analysis
cd spec2vec_gnps_data_analysis
jupyter notebook

Download data

Download pre-trained models

Pretrained Word2Vec models to be used with Spec2Vec can be found on zenodo.

About

Analysis and benchmarking of mass spectra similarity measures using gnps data set.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published