Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix custom kernel registration #12674

Merged
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
44 changes: 25 additions & 19 deletions python/llm/src/ipex_llm/transformers/xpu_ops.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,9 +20,9 @@
import xe_addons


@torch.library.register_fake("ipex_llm::forward_new")
def _(x, weight, qtype, input_size):
return torch.empty_like(x)
# @torch.library.register_fake("ipex_llm::forward_new")
# def _(x, weight, qtype, input_size):
# return ???


# @torch.library.register_fake("ipex_llm::dequant")
Expand All @@ -32,32 +32,38 @@ def _(x, weight, qtype, input_size):

@torch.library.register_fake("ipex_llm::mlp_forward_xpu")
def _(x, weight1, weight2, batch_size, state_size, output_size, act_type, qtype):
return torch.empty_like(x)
return torch.empty([batch_size, output_size],
dtype=x.dtype, device=x.device)


# @torch.library.register_fake("ipex_llm::rwkv_linear_attention_v4")
# def _(time_decay, time_first, key, value, num_state, den_state, max_state)
# return ???
@torch.library.register_fake("ipex_llm::rwkv_linear_attention_v4")
def _(time_decay, time_first, key, value, num_state, den_state, max_state):
return torch.empty_like(key)


# @torch.library.register_fake("ipex_llm::rwkv_linear_attention_v5")
# def _(time_decay, time_first, receptance, key, value, state)
# return ???
@torch.library.register_fake("ipex_llm::rwkv_linear_attention_v5")
def _(time_decay, time_first, receptance, key, value, state):
bsz, n_heads, seq_len, head_dim = key.shape
return torch.empty([bsz, seq_len, n_heads, head_dim],
dtype=key.dtype, device=key.device)


# @torch.library.register_fake("ipex_llm::rwkv_time_shift")
# def _(hidden, shifted, mix):
# return ???
@torch.library.register_fake("ipex_llm::rwkv_time_shift")
def _(hidden, shifted, mix):
bsz, seq_len, hidden_size = hidden.shape
return torch.empty([mix.size(0), bsz, seq_len, hidden_size],
dtype=hidden.dtype, device=hidden.device)


# @torch.library.register_fake("ipex_llm::dequantize_rows")
# def _(x, weight, qtype, state_size, output_size):
# return ???
@torch.library.register_fake("ipex_llm::dequantize_rows")
def _(x, weight, qtype, state_size, output_size):
return torch.empty([x.size(0), x.size(1), state_size],
dtype=torch.float, device=weight.device)


@torch.library.register_fake("ipex_llm::batch_forward")
def _(x, weight, qtype):
return torch.empty_like(x)
# @torch.library.register_fake("ipex_llm::batch_forward")
# def _(x, weight, qtype):
# return ???


@torch.library.register_fake("ipex_llm::sdp")
Expand Down
Loading