Skip to content

SAG-Net is the official repository of the paper "Using Segment-Level Attention to Guide Breast Ultrasound Video Classification"..

License

Notifications You must be signed in to change notification settings

imzhangyd/SAG-Net

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 

Repository files navigation

SAG-Net

SAG-Net is the official repository of the paper "Using Segment-Level Attention to Guide Breast Ultrasound Video Classification".

The code are coming soon.

WHBUS Dataset

Please download our dataset at https://drive.google.com/drive/folders/13oBWsRzKooeZBD6eRMHs6Mpf7ZeiPQHo?usp=sharing. Then set the dataset path in the code to where you put the dataset.

Model

The model weights trained on BUV and WHBUS can be found at .

Environment

python==3.9.7
torch==1.12.1+cu113
torchvision==0.13.1+cu113
timm==0.3.2
Please see 'requirements.txt' for details.

Test

  1. Test on BUV dataset
python main.py \
    --batch_size 1 \
    --num_segs 6 --num_frames 3 \
    --resume ./pretrained_models/BUVweight/checkpoint-best067-mvauc0.9.pth \
    --eval True
  1. Test on WHBUS dataset
python main.py \
    --dataset 'WHBUS' \
    --traintxt '/mnt/data1/ZYDdata/data/WHBUS/tsm_train.txt' \
    --valtxt '/mnt/data1/ZYDdata/data/WHBUS/tsm_val.txt' \
    --batch_size 1 \
    --num_segs 8 --num_frames 7 \
    --resume ./pretrained_models/WHBUSweight/checkpoint-best085-mvauc0.9.pth \
    --eval True

About

SAG-Net is the official repository of the paper "Using Segment-Level Attention to Guide Breast Ultrasound Video Classification"..

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published